
Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 7

Operating System Concepts

Muhammad Daniyal Liaquat

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topics

1. Deadlocks

2. Deadlock Conditions

3. Deadlock Prevention

4. Deadlock Avoidance

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

1. Deadlocks

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlocks

Deadlock is a situation where a set of processes are blocked because each

process is holding a resource and waiting for another resource acquired by

some other process.

For example, in the below diagram, Process 1 is holding Resource 1 and

waiting for resource 2 which is acquired by process 2, and process 2 is

waiting for resource 1.

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

• Traffic only in one direction.

• Each section of a bridge can be viewed as a resource.

• If a deadlock occurs, it can be resolved if one car backs up (preempt

resources and rollback).

• Several cars may have to be backed up if a deadlock occurs.

• Starvation is possible.

DEADLOCKS

Bridge Crossing

Example

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System Model

System consists of resources

Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices

Each resource type Ri has Wi instances.

Each process utilizes a resource as follows:

request

use

release

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

2. Deadlock Conditions

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Conditions of Deadlocks

Deadlock can arise if following four necessary conditions hold

simultaneously.

1. Mutual Exclusion: One or more than one resource are non-sharable means

Only one process can use at a time.

2. Hold and Wait: A process is holding at least one resource and waiting for

another resources.

3. No Pre-emption: A resource cannot be taken from a process unless the

process releases the resource means the process which once scheduled will

be executed till the completion and no other process can be scheduled by the

scheduler meanwhile.

4. Circular Wait: A set of processes are waiting for each other in circular form

means All the processes must be waiting for the resources in a cyclic manner

so that the last process is waiting for the resource which is being held by the

first process

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Difference between Starvation and Deadlock

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock with Mutex Locks

Deadlocks can occur via system calls, locking, etc.

See example box in text page 318 for mutex deadlock

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph

V is partitioned into two types:

P = {P1, P2, …, Pn}, the set consisting of all the processes

in the system

R = {R1, R2, …, Rm}, the set consisting of all resource

types in the system

request edge – directed edge Pi → Rj

assignment edge – directed edge Rj → Pi

A set of vertices V and a set of edges E.

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph (Cont.)

Process

Resource Type with 4 instances

Pi requests instance of Rj

Pi is holding an instance of Rj

Pi

Pi

Rj

Rj

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

RESOURCE ALLOCATION GRAPH

• If the graph contains no cycles, then no process is deadlocked.

• If there is a cycle, then:

a) If resource types have multiple instances, then deadlock MAY exist.

b) If each resource type has 1 instance, then deadlock has occurred.

R3 Assigned to P3

Resource allocation graph

P2 Requests P3

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource allocation graph

with a deadlock.

Resource allocation graph

with a cycle but no deadlock.

RESOURCE ALLOCATION GRAPH

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

If graph contains no cycles no deadlock

If graph contains a cycle

if only one instance per resource type, then deadlock

if several instances per resource type, possibility of

deadlock

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Handling

The various strategies for handling deadlock are

1. Deadlock Prevention

2. Deadlock Avoidance

3. Deadlock Detection and Recovery

4. Deadlock Ignorance

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

3. Deadlock Prevention

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention

Mutual Exclusion – not required for sharable resources (e.g., read-only

files); must hold for non-sharable resources

• Shared resources such as read-only files do not lead to deadlocks.

• Unfortunately, some resources, such as printers and tape drives, require exclusive

access by a single process.

Hold and Wait – must guarantee that whenever a process requests a

resource, it does not hold any other resources

Require process to request and be allocated all its resources before it

begins execution, or allow process to request resources only when the

process has none allocated to it.

Low resource utilization; starvation possible.

To prevent this condition processes must be prevented from holding one or

more resources while simultaneously

Deadlocks can be prevented by preventing at least one of the four required conditions:

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Prevention (Cont.)

No Preemption –

If a process that is holding some resources requests another

resource that cannot be immediately allocated to it, then all

resources currently being held are released

Preempted resources are added to the list of resources for which

the process is waiting

Process will be restarted only when it can regain its old resources,

as well as the new ones that it is requesting

Preemption of process resource allocations can prevent this condition of

deadlocks, when it is possible.

Circular Wait – impose a total ordering of all resource types, and

require that each process requests resources in an increasing order of

enumeration

One way to avoid circular wait is to number all resources, and to require

that processes request resources only in strictly increasing (or decreasing)

order. waiting for one or more others.

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Example

/* thread one runs in this function */

void *do_work_one(void *param)

{

 pthread_mutex_lock(&first_mutex);

 pthread_mutex_lock(&second_mutex);

 /** * Do some work */

 pthread_mutex_unlock(&second_mutex);

 pthread_mutex_unlock(&first_mutex);

 pthread_exit(0);

}

/* thread two runs in this function */

void *do_work_two(void *param)

{

 pthread_mutex_lock(&second_mutex);

 pthread_mutex_lock(&first_mutex);

 /** * Do some work */

 pthread_mutex_unlock(&first_mutex);

 pthread_mutex_unlock(&second_mutex);

 pthread_exit(0);

}

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Example with Lock Ordering

void transaction(Account from, Account to, double amount)

{

 mutex lock1, lock2;

 lock1 = get_lock(from);

 lock2 = get_lock(to);

 acquire(lock1);

 acquire(lock2);

 withdraw(from, amount);

 deposit(to, amount);

 release(lock2);

 release(lock1);

}

Transactions 1 and 2 execute concurrently. Transaction 1 transfers $25

from account A to account B, and Transaction 2 transfers $50 from account

B to account A

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

4. Deadlock Avoidance

7.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Deadlock Avoidance

Requires that the system has some additional a priori information available

Simplest and most useful model requires that each process declare the

maximum number of resources of each type that it may need

The deadlock-avoidance algorithm dynamically examines the resource-

allocation state to ensure that there can never be a circular-wait condition

Resource-allocation state is defined by the number of available and

allocated resources, and the maximum demands of the processes

In deadlock avoidance, the operating system checks whether the system is

in safe state or in unsafe state at every step which the operating system

performs.

The process continues until the system is in safe state.

Once the system moves to unsafe state, the OS has to backtrack one step.

In simple words, The OS reviews each allocation so that the allocation

doesn't cause the deadlock in the system.

7.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe State

When a process requests an available resource, system must

decide if immediate allocation leaves the system in a safe state

System is in safe state if there exists a sequence <P1, P2, …, Pn>

of ALL the processes in the systems such that for each Pi, the

resources that Pi can still request can be satisfied by currently

available resources + resources held by all the Pj, with j < I

That is:

If Pi resource needs are not immediately available, then Pi can

wait until all Pj have finished

When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate

When Pi terminates, Pi +1 can obtain its needed resources, and

so on

7.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Basic Facts

If a system is in safe state no deadlocks

If a system is in unsafe state possibility of deadlock

Avoidance ensure that a system will never enter an

unsafe state.

7.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safe, Unsafe, Deadlock State

7.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Avoidance Algorithms

Single instance of a resource type

Use a resource-allocation graph

Multiple instances of a resource type

 Use the banker’s algorithm

7.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Scheme

Claim edge Pi → Rj indicated that process Pi may request

resource Rj; represented by a dashed line

Claim edge converts to request edge when a process requests

a resource

Request edge converted to an assignment edge when the

resource is allocated to the process

When a resource is released by a process, assignment edge

reconverts to a claim edge

Resources must be claimed a priori in the system

7.29 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph

7.30 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Unsafe State In Resource-Allocation Graph

7.31 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Allocation Graph Algorithm

Suppose that process Pi requests a resource Rj

The request can be granted only if converting the

request edge to an assignment edge does not result

in the formation of a cycle in the resource allocation

graph

7.32 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Banker’s Algorithm

Multiple instances

Each process must a priori claim maximum use

When a process requests a resource it may have to wait

When a process gets all its resources it must return them in a

finite amount of time

7.33 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Data Structures for the Banker’s Algorithm

Available: Vector of length m. If available [j] = k, there are k

instances of resource type Rj available

Max: n x m matrix. If Max [i,j] = k, then process Pi may request at

most k instances of resource type Rj

Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently

allocated k instances of Rj

Need: n x m matrix. If Need[i,j] = k, then Pi may need k more

instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

Let n = number of processes, and m = number of resources types.

7.34 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Safety Algorithm

1. Let Work and Finish be vectors of length m and n, respectively.
Initialize:

Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a safe state

7.35 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Resource-Request Algorithm for Process Pi

Requesti = request vector for process Pi. If Requesti [j] = k then
process Pi wants k instances of resource type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error condition,
since process has exceeded its maximum claim

2. If Requesti Available, go to step 3. Otherwise Pi must wait,
since resources are not available

3. Pretend to allocate requested resources to Pi by modifying the
state as follows:

 Available = Available – Requesti;

 Allocationi = Allocationi + Requesti;

 Needi = Needi – Requesti;

If safe the resources are allocated to Pi

If unsafe Pi must wait, and the old resource-allocation state
is restored

7.36 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Banker’s Algorithm

5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5instances), and C (7 instances)

Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

7.37 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example (Cont.)

The content of the matrix Need is defined to be Max – Allocation

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

The system is in a safe state since the sequence < P1, P3, P4, P2, P0>

satisfies safety criteria

7.38 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example: P1 Request (1,0,2)

Check that Request Available (that is, (1,0,2) (3,3,2) true

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>

satisfies safety requirement

Can request for (3,3,0) by P4 be granted?

Can request for (0,2,0) by P0 be granted?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Any Questions ?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 8

Operating System Concepts

Muhammad Daniyal Liaquat

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topics

1. Deadlock Detection & Recovery

2. Deadlock Ignorance

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

1. Deadlock Detection & Recovery

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

3. Deadlock Detection

Allow system to enter deadlock state

Detection algorithm

Recovery scheme

This strategy involves waiting until a deadlock occurs.

After deadlock occurs, the system state is recovered.

The main challenge with this approach is detecting the deadlock

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single Instance of Each Resource Type

Maintain wait-for graph

Nodes are processes

Pi → Pj if Pi is waiting for Pj

Periodically invoke an algorithm that searches for a cycle in the

graph. If there is a cycle, there exists a deadlock

An algorithm to detect a cycle in a graph requires an order of n2

operations, where n is the number of vertices in the graph

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

DEADLOCKS
Need an algorithm that
determines if deadlock
occurred.

Also need a means of recovering
from that deadlock.

Deadlock Detection

SINGLE INSTANCE OF A RESOURCE TYPE

•Wait-for graph == remove the resources from the
usual graph and collapse edges.

•An edge from p(j) to p(i) implies that p(j) is waiting
for p(i) to release.

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Several Instances of a Resource Type

Available: A vector of length m indicates the number of

available resources of each type

Allocation: An n x m matrix defines the number of resources

of each type currently allocated to each process

Request: An n x m matrix indicates the current request of

each process. If Request [i][j] = k, then process Pi is

requesting k more instances of resource type Rj.

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively

Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi 0, then

Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4…and if i doesn’t exist then go to step 3.

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Detection Algorithm (Cont.)

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1 i n, then the system is in
deadlock state. Moreover, if Finish[i] == false, then Pi is
deadlocked

Algorithm requires an order of O(m x n2) operations to detect

whether the system is in deadlocked state

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example of Detection Algorithm

Five processes P0 through P4; three resource types

A (7 instances), B (2 instances), and C (6 instances)

Snapshot at time T0:

 Allocation Request Available

 A B C A B C A B C

 P0 0 1 0 0 0 0 0 0 0

 P1 2 0 0 2 0 2

 P2 3 0 3 0 0 0

 P3 2 1 1 1 0 0

 P4 0 0 2 0 0 2

Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Example (Cont.)

P2 requests an additional instance of type C

 Request

 A B C

 P0 0 0 0

 P1 2 0 2

 P2 0 0 1

 P3 1 0 0

 P4 0 0 2

State of system?

Can reclaim resources held by process P0, but insufficient

resources to fulfill other processes; requests

Deadlock exists, consisting of processes P1, P2, P3, and P4

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Detection-Algorithm Usage

When, and how often, to invoke depends on:

How often a deadlock is likely to occur?

How many processes will need to be rolled back?

 one for each disjoint cycle

If detection algorithm is invoked arbitrarily, there may be many

cycles in the resource graph and so we would not be able to tell

which of the many deadlocked processes “caused” the

deadlock.

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recovery from Deadlock: Process Termination

Abort all deadlocked processes

Abort one process at a time until the deadlock cycle is eliminated

In which order should we choose to abort?

1. Priority of the process

2. How long process has computed, and how much longer to

completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Recovery from Deadlock: Resource Preemption

Selecting a victim – minimize cost

Rollback – return to some safe state, restart process for that

state

Starvation – same process may always be picked as victim,

include number of rollback in cost factor

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

So, the deadlock has occurred. Now, how do we get the resources back and
gain forward progress?

PROCESS TERMINATION:

• Could delete all the processes in the deadlock -- this is expensive.

• Delete one at a time until deadlock is broken (time consuming).
• Select who to terminate based on priority, time executed, time to

completion, needs for completion, or depth of rollback

• In general, it's easier to preempt the resource, than to terminate the

process.

RESOURCE PREEMPTION:

• Select a victim - which process and which resource to preempt.

• Rollback to previously defined "safe" state.

• Prevent one process from always being the one preempted (starvation).

Deadlock Recovery

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

COMBINED APPROACH TO DEADLOCK HANDLING:

• Type of resource may dictate best deadlock handling. Look at ease of
implementation, and effect on performance.

• In other words, there is no one best technique.

• Cases include:

Preemption for memory, Preallocation for swap space,

Avoidance for devices (can extract Needs from process.)

Deadlock Recovery

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

2. Deadlock Ignorance

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

4. Deadlock Ignorance

This strategy involves ignoring the concept of deadlock and assuming as if it

does not exist.

This strategy helps to avoid the extra overhead of handling deadlock.

Windows and Linux use this strategy and it is the most widely used method.

"Deadlock ignorance" in the context of operating systems typically refers to

a situation where system administrators, developers, or users are unaware

of the possibility of deadlocks occurring in a system or how to deal with

them. Deadlocks are a common issue in multi-threaded or multi-process

systems, and they can lead to system unresponsiveness and inefficiency.

Here are some key points related to "deadlock ignorance" in operating

systems:

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

4. Deadlock Ignorance

1. Lack of Awareness: Deadlock ignorance can occur when those responsible

for managing or developing an operating system are not aware of the

conditions that can lead to deadlocks. This lack of awareness may result in

systems that are more prone to experiencing deadlock situations.

2. No Detection or Handling: An operating system that is "deadlock ignorant"

may lack mechanisms for detecting or handling deadlocks. Without proper

deadlock detection and resolution techniques, a system can remain in a

deadlock state indefinitely.

3. Failure to Implement Prevention Strategies: Operating system designers

and administrators should be aware of various strategies for preventing

deadlocks, such as resource allocation graphs, deadlock avoidance, or

deadlock detection with recovery. Ignoring these prevention strategies can

lead to an increased risk of deadlocks occurring.

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

4. Deadlock Ignorance

4. Inadequate Resource Allocation Policies: Ignorance of proper resource

allocation policies can lead to deadlocks. For example, if an operating

system allows resources to be allocated without considering potential

resource conflicts, it can increase the likelihood of deadlocks.

5. Insufficient User Education: Users of the operating system may also

contribute to deadlock ignorance if they do not understand how to use the

system's resources in a way that minimizes the risk of deadlocks. Educating

users on proper system usage is essential to reduce the likelihood of

deadlock scenarios.

To address deadlock ignorance, it's important to promote education and

awareness of deadlock-related issues, both among system administrators

and developers, and among end-users. Additionally, implementing proper

deadlock detection and resolution mechanisms within the operating system

can help mitigate the impact of deadlock situations when they do occur.

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Any Questions ?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 9

Operating System Concepts

Muhammad Daniyal Liaquat

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topics

1. Main Memory

2. Memory Management

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

1. Main Memory

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Main Memory?

The main memory is central to the operation of a Modern

Computer. Main Memory is a large array of words or

bytes, ranging in size from hundreds of thousands to

billions. Main memory is a repository of rapidly available

information shared by the CPU and I/O devices. Main

memory is the place where programs and information

are kept when the processor is effectively utilizing

them. Main memory is associated with the processor, so

moving instructions and information into and out of the

processor is extremely fast. Main memory is also known

as RAM (Random Access Memory). This memory is

volatile. RAM loses its data when a power interruption

occurs.

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Main Memory?

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

2. Memory Management

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Memory Management?

In a multiprogramming computer, the Operating System resides in a part of

memory, and the rest is used by multiple processes. The task of subdividing

the memory among different processes is called Memory Management.

Memory management is a method in the operating system to manage

operations between main memory and disk during process execution. The

main aim of memory management is to achieve efficient utilization of

memory.

Why Memory Management is Required?

Allocate and de-allocate memory before and after process execution.

To keep track of used memory space by processes.

To minimize fragmentation issues.

To proper utilization of main memory.

To maintain data integrity while executing of process.

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Logical and Physical Address Space

Logical Address Space: An address generated by the CPU

is known as a “Logical Address”. It is also known as a Virtual

address. Logical address space can be defined as the size of the process.

A logical address can be changed.

Physical Address Space: An address seen by the memory

unit (i.e. the one loaded into the memory address register of the memory) is

commonly known as a “Physical Address”. A Physical address is also

known as a Real address. The set of all physical addresses corresponding

to these logical addresses is known as Physical address space. A physical

address is computed by Memory Management Unit(MMU). The run-time

mapping from virtual to physical addresses is done by a hardware device

Memory Management Unit(MMU). The physical address always remains

constant.

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Static and Dynamic Loading

Loading a process into the main memory is done by a loader. There are two

different types of loading :

Static Loading: Static Loading is basically loading the entire

program into a fixed address. It requires more memory space.

Dynamic Loading: The entire program and all data of a process

must be in physical memory for the process to execute. So, the size of a

process is limited to the size of physical memory. To gain proper memory

utilization, dynamic loading is used. In dynamic loading, a routine is not

loaded until it is called. All routines are residing on disk in a relocatable load

format. One of the advantages of dynamic loading is that the unused routine

is never loaded. This loading is useful when a large amount of code is

needed to handle it efficiently.

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Static and Dynamic Linking

To perform a linking task a linker is used. A linker is a program that takes

one or more object files generated by a compiler and combines them into a

single executable file.

Static Linking: In static linking, the linker combines all necessary

program modules into a single executable program. So there is no runtime

dependency. Some operating systems support only static linking, in which

system language libraries are treated like any other object module.

Dynamic Linking: The basic concept of dynamic linking is

similar to dynamic loading. In dynamic linking, “Stub” is included for each

appropriate library routine reference. A stub is a small piece of code. When

the stub is executed, it checks whether the needed routine is already in

memory or not. If not available then the program loads the routine into

memory.

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Swapping

When a process is executed it must have resided in memory. Swapping is a

process of swapping a process temporarily into a secondary memory from

the main memory, which is fast compared to secondary memory. A

swapping allows more processes to be run and can be fit into memory at

one time. The main part of swapping is transferred time and the total time is

directly proportional to the amount of memory swapped. Swapping is also

known as roll-out, or roll because if a higher priority process arrives and

wants service, the memory manager can swap out the lower priority process

and then load and execute the higher priority process. After finishing higher

priority work, the lower priority process swapped back in memory and

continued to the execution process.

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Swapping

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Management with Monoprogramming

(Without Swapping)

This is the simplest memory management approach the memory is divided into

two sections:

One part of the operating system

The second part of the user program

In this approach, the operating system keeps track of the first and last

location available for the allocation of the user program

The operating system is loaded either at the bottom or at top

Interrupt vectors are often loaded in low memory therefore, it makes sense

to load the operating system in low memory

Sharing of data and code does not make much sense in a single process

environment

The Operating system can be protected from user programs with the help of

a fence register.

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Advantages of Memory Management

It is a simple management approach

Disadvantages of Memory Management

It does not support multiprogramming

Memory is wasted

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Multiprogramming with Fixed Partitions (Without

Swapping)

A memory partition scheme with a fixed number of partitions was introduced

to support multiprogramming. this scheme is based on contiguous allocation

Each partition is a block of contiguous memory

Memory is partitioned into a fixed number of partitions.

Each partition is of fixed size

Example: As shown in fig. memory is partitioned into 5 regions the region is

reserved for updating the system the remaining four partitions are for the user

program.

Fixed Size Partitioning

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Partition Table

Once partitions are defined operating system keeps track of the status

of memory partitions it is done through a data structure called a partition

table.

Sample Partition Table

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Logical vs Physical Address

An address generated by the CPU is commonly referred to as a logical

address. the address seen by the memory unit is known as the physical

address. The logical address can be mapped to a physical address by

hardware with the help of a base register this is known as dynamic

relocation of memory references.

Contiguous Memory Allocation

The main memory should accommodate both the operating system and the

different client processes. Therefore, the allocation of memory becomes an

important task in the operating system. The memory is usually divided into

two partitions: one for the resident operating system and one for the user

processes. We normally need several user processes to reside in memory

simultaneously. Therefore, we need to consider how to allocate available

memory to the processes that are in the input queue waiting to be brought

into memory. In adjacent memory allotment, each process is contained in a

single contiguous segment of memory.

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Contiguous Memory Allocation

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Memory Allocation

To gain proper memory utilization, memory allocation must be allocated efficient

manner. One of the simplest methods for allocating memory is to divide memory

into several fixed-sized partitions and each partition contains exactly one process.

Thus, the degree of multiprogramming is obtained by the number of partitions.

Multiple partition allocation: In this method, a process is selected from

the input queue and loaded into the free partition. When the process terminates, the

partition becomes available for other processes.

Fixed partition allocation: In this method, the operating system

maintains a table that indicates which parts of memory are available and which are

occupied by processes. Initially, all memory is available for user processes and is

considered one large block of available memory. This available memory is known

as a “Hole”. When the process arrives and needs memory, we search for a hole that

is large enough to store this process. If the requirement is fulfilled then we allocate

memory to process, otherwise keeping the rest available to satisfy future requests.

While allocating a memory sometimes dynamic storage allocation problems occur,

which concerns how to satisfy a request of size n from a list of free holes. There are

some solutions to this problem:

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

First Fit

In the First Fit, the first available free hole fulfil the requirement of the

process allocated.

Here, in this diagram, a 40 KB memory block is the first available free hole

that can store process A (size of 25 KB), because the first two blocks did

not have sufficient memory space.

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Best Fit

In the Best Fit, allocate the smallest hole that is big enough to process requirements.

For this, we search the entire list, unless the list is ordered by size.

Here in this example, first, we traverse the complete list and find the last hole 25KB

is the best suitable hole for Process A(size 25KB). In this method, memory

utilization is maximum as compared to other memory allocation techniques.

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Worst Fit

In the Worst Fit, allocate the largest available hole to process. This method

produces the largest leftover hole.

Here in this example, Process A (Size 25 KB) is allocated to the largest available

memory block which is 60KB. Inefficient memory utilization is a major issue in the

worst fit.

7.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fragmentation

Fragmentation is defined as when the process is loaded and removed after

execution from memory, it creates a small free hole. These holes can not be

assigned to new processes because holes are not combined or do not fulfill

the memory requirement of the process. To achieve a degree of

multiprogramming, we must reduce the waste of memory or fragmentation

problems. In the operating systems two types of fragmentation:

1. Internal fragmentation: Internal fragmentation occurs when

memory blocks are allocated to the process more than their requested size.

Due to this some unused space is left over and creating an internal

fragmentation problem.

Example: Suppose there is a fixed partitioning used for memory allocation

and the different sizes of blocks 3MB, 6MB, and 7MB space in memory.

Now a new process p4 of size 2MB comes and demands a block of

memory. It gets a memory block of 3MB but 1MB block of memory is a

waste, and it can not be allocated to other processes too. This is called

internal fragmentation.

7.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fragmentation

2. External fragmentation: In External Fragmentation, we have a free

memory block, but we can not assign it to a process because blocks are not

contiguous. Example: Suppose (consider the above example) three processes p1,

p2, and p3 come with sizes 2MB, 4MB, and 7MB respectively. Now they get

memory blocks of size 3MB, 6MB, and 7MB allocated respectively. After

allocating the process p1 process and the p2 process left 1MB and 2MB. Suppose a

new process p4 comes and demands a 3MB block of memory, which is available,

but we can not assign it because free memory space is not contiguous. This is

called external fragmentation.

Both the first-fit and best-fit systems for memory allocation are affected by external

fragmentation. To overcome the external fragmentation problem Compaction is

used. In the compaction technique, all free memory space combines and makes one

large block. So, this space can be used by other processes effectively.

Another possible solution to the external fragmentation is to allow the logical

address space of the processes to be noncontiguous, thus permitting a process to be

allocated physical memory wherever the latter is available.

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Any Questions ?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 10

Operating System Concepts

Muhammad Daniyal Liaquat

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topics

1. Paging

2. Segmentation

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

1. Paging

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Paging?

Paging is a technique that eliminates the requirements of contiguous

allocation of main memory. In this, the main memory is divided into fixed-

size blocks of physical memory called frames. The size of a frame should

be kept the same as that of a page to maximize the main memory and avoid

external fragmentation.

A computer system can address and utilize more memory than the size of

the memory present in the computer hardware. This extra memory is

referred to as virtual memory. Virtual memory is a part of secondary

memory that the computer system uses as primary memory(RAM). Paging

has a vital role in the implementation of virtual memory.

Paging is a memory management technique in which process address space

is broken into blocks of the same size called pages (size is power of 2,

between 512 bytes and 8192 bytes). The size of the process is measured in

the number of pages.

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Address Translation

Page table

A Page Table is the data structure used by a virtual memory system in a

computer operating system to store the mapping between the virtual

address and physical addresses.

The virtual address is also known as the Logical address and is generated

by the CPU. While Physical address is the address that actually exists on

memory.

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Address Translation

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Paging?

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Address Translation Scheme

Address generated by the CPU is divided into:

•Page number (p) – used as an index into a page

table which contains base address of each page

in physical memory.

•Page offset (d) – combined with base address to

define the physical memory address that is sent to

the memory unit.

4096 bytes = 2^12 – it requires 12 bits to contain the Page

offset dp

PAGING

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

• A 32 bit machine can
address 4 gigabytes which is
4 million pages (at 1024
bytes/page). WHO says how
big a page is, anyway?

• Could use dedicated
registers (OK only with
small tables.)

•Could use a register
pointing to table in memory
(slow access.)

•Cache or associative
memory

•(TLB = Translation
Lookaside Buffer):

• simultaneous search
is fast and uses only a few
registers.

IMPLEMENTATION OF THE PAGE TABLE

TLB = Translation Lookaside Buffer

PAGING

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

IMPLEMENTATION OF THE PAGE TABLE

Issues include:

key and value

hit rate 90 - 98% with 100 registers

add entry if not found

Relevant times:

2 nanoseconds to search associative memory – the TLB.

20 nanoseconds to access processor cache and bring it into TLB for next time.

Calculate time of access:
hit

miss

= 1 search + 1 memory reference

= 1 search + 1 mem reference(of page table) + 1 mem reference.

PAGING

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

INVERTED PAGE TABLE:

One entry for each real page of
memory.

Entry consists of the virtual
address of the page stored in
that real memory location, with
information about the process
that owns that page.

Essential when you need to do
work on the page and must find
out what process owns it.

Use hash table to limit the
search to one - or at most a
few - page table entries.

PAGING

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

PROTECTION:

•Bits associated with page tables.

•Can have read, write, execute, valid bits.

•Valid bit says page isn’t in address space.

•Write to a write-protected page causes a fault. Touching an invalid page causes a fault.

ADDRESS MAPPING:

•Allows physical memory larger than logical memory.

•Useful on 32 bit machines with more than 32-bit addressable words of memory.

•The operating system keeps a frame containing descriptions of physical pages; if allocated, then
to which logical page in which process.

PAGING

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Advantages and Disadvantages of Paging

Here is a list of advantages and disadvantages of paging.

Paging reduces external fragmentation, but still suffer

from internal fragmentation.

Paging is simple to implement and assumed as an

efficient memory management technique.

Due to equal size of the pages and frames, swapping

becomes very easy.

Page table requires extra memory space, so may not be

good for a system having small RAM.

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

2. Segmentation

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Segmentation?

Segmentation is a memory management technique in which each job is

divided into several segments of different sizes, one for each module that

contains pieces that perform related functions. Each segment is actually a

different logical address space of the program.

When a process is to be executed, its corresponding segmentation are

loaded into non-contiguous memory though every segment is loaded into a

contiguous block of available memory.

Segmentation memory management works very similar to paging but here

segments are of variable-length where as in paging pages are of fixed size.

A program segment contains the program's main function, utility functions,

data structures, and so on. The operating system maintains a segment map

table for every process and a list of free memory blocks along with

segment numbers, their size and corresponding memory locations in main

memory. For each segment, the table stores the starting address of the

segment and the length of the segment. A reference to a memory location

includes a value that identifies a segment and an offset.

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

What is Segmentation?

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

USER'S VIEW OF MEMORY

A programmer views a process consisting of unordered segments with various
purposes. This view is more useful than thinking of a linear array of words. We really
don't care at what address a segment is located.

Typical segments include

global variables procedure call stack code for each function

local variables for each large data structures

Logical address = segment name (number) + offset Memory is addressed by both

segment and offset.

SEGMENTATION

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

HARDWARE -- Must map a dyad (segment / offset) into one-dimensional address.

Segment Table

CPU

MEMORY

Limit Base

<

No

Logical

Address Yes

+

Physical

Address

S D

SEGMENTATION

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

HARDWARE

base / limit pairs in a segment table.

1

3

2

4

1

4

2

3

Logical Address Space Physical Memory

Limit Base

0 1000 1400

1 400 6300

2 400 4300

3 1100 3200

4 1000 4700

0

SEGMENTATION

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

PROTECTION AND SHARING

Addresses are associated with a logical
unit (like data, code, etc.) so protection is
easy.

Can do bounds checking on arrays

Sharing specified at a logical level, a
segment has an attribute called
"shareable".

Can share some code but not all - for
instance a common library of subroutines.

FRAGMENTATION

Use variable allocation since segment
lengths vary.

Again have issue of fragmentation;
Smaller segments means less
fragmentation. Can use compaction

since segments are relocatable.

SEGMENTATION

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Any Questions ?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 11

Operating System Concepts

Muhammad Daniyal Liaquat

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topics

1. Fixed and Dynamic Partitioning

2. Virtual Memory

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

1. Fixed (Static) & Dynamic (Variable) Partitioning

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fixed Partitioning

This is the oldest and simplest technique used to put more than one process

in the main memory. In this partitioning, the number of partitions (non-

overlapping) in RAM is fixed but the size of each partition may or may

not be the same. As it is a contiguous allocation, hence no spanning is

allowed. Here partitions are made before execution or during system

configure.

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Fixed Partitioning

As illustrated in above figure, first process is only consuming 1MB out of

4MB in the main memory.

Hence, Internal Fragmentation in first block is (4-1) = 3MB.

Sum of Internal Fragmentation in every block = (4-1)+(8-7)+(8-7)+(16-

14)= 3+1+1+2 = 7MB.

Suppose process P5 of size 7MB comes. But this process cannot be

accommodated in spite of available free space because of contiguous

allocation (as spanning is not allowed). Hence, 7MB becomes part of

External Fragmentation.

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Advantages of Fixed Partitioning

Easy to implement: The algorithms needed to implement Fixed

Partitioning are straightforward and easy to implement.

Low overhead: Fixed Partitioning requires minimal overhead, which

makes it ideal for systems with limited resources.

Predictable: Fixed Partitioning ensures a predictable amount of memory

for each process.

No external fragmentation: Fixed Partitioning eliminates the problem of

external fragmentation.

Suitable for systems with a fixed number of processes: Fixed

Partitioning is well-suited for systems with a fixed number of processes and

known memory requirements.

Prevents processes from interfering with each other: Fixed Partitioning

ensures that processes do not interfere with each other’s memory space.

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Advantages of Fixed Partitioning

Efficient use of memory: Fixed Partitioning ensures that memory is used

efficiently by allocating it to fixed-sized partitions.

Good for batch processing: Fixed Partitioning is ideal for batch

processing environments where the number of processes is fixed.

Better control over memory allocation: Fixed Partitioning gives the

operating system better control over the allocation of memory.

Easy to debug: Fixed Partitioning is easy to debug since the size and

location of each process are predetermined.

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disadvantages of Fixed Partitioning

1. Internal Fragmentation:

Main memory use is inefficient. Any program, no matter how small,

occupies an entire partition. This can cause internal fragmentation.

2. External Fragmentation:

The total unused space (as stated above) of various partitions

cannot be used to load the processes even though there is space

available but not in the contiguous form (as spanning is not

allowed)

3. Limit process size:

Process of size greater than the size of the partition in Main

Memory cannot be accommodated. The partition size cannot be

varied according to the size of the incoming process size. Hence,

the process size of 32MB in the above-stated example is invalid.

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disadvantages of Fixed Partitioning

Limitation on Degree of Multiprogramming:

Partitions in Main Memory are made before execution or during system

configure. Main Memory is divided into a fixed number of partitions.

Suppose if there are

condition must be fulfilled. Number of processes greater than the

number of partitions in RAM is invalid in Fixed Partitioning.

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic Partitioning

It is a part of the Contiguous allocation technique. It is used to alleviate

the problem faced by Fixed Partitioning. In contrast with fixed

partitioning, partitions are not made before the execution or during

system configuration. Various features associated with variable

Partitioning-

Initially, RAM is empty and partitions are made during the run-time

according to the process’s need instead of partitioning during

system configuration.

The size of the partition will be equal to the incoming process.

The partition size varies according to the need of the process so that

internal fragmentation can be avoided to ensure efficient utilization

of RAM.

The number of partitions in RAM is not fixed and depends on the

number of incoming processes and the Main Memory’s size.

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Dynamic Partitioning

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Advantages of Dynamic Partitioning

No Internal Fragmentation: In variable Partitioning, space in the main

memory is allocated strictly according to the need of the process, hence

there is no case of internal fragmentation. There will be no unused space

left in the partition.

No restriction on the Degree of Multiprogramming: More processes can

be accommodated due to the absence of internal fragmentation. A process

can be loaded until the memory is empty.

No Limitation on the Size of the Process: In Fixed partitioning, the

process with a size greater than the size of the largest partition could not be

loaded and the process can not be divided as it is invalid in the contiguous

allocation technique. Here, In variable partitioning, the process size can’t

be restricted since the partition size is decided according to the process

size.

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disadvantages of Dynamic Partitioning

Difficult Implementation: Implementing variable Partitioning is difficult

as compared to Fixed Partitioning as it involves the allocation of memory

during run-time rather than during system configuration.

External Fragmentation: There will be external fragmentation despite the

absence of internal fragmentation. For example, suppose in the above

example- process P1(2MB) and process P3(1MB) completed their

execution. Hence two spaces are left i.e. 2MB and 1MB. Let’s suppose

process P5 of size 3MB comes. The space in memory cannot be allocated

as no spanning is allowed in contiguous allocation. The rule says that the

process must be continuously present in the main memory to get executed.

Hence it results in External Fragmentation.

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disadvantages of Dynamic Partitioning

Now P5 of size 3 MB cannot be accommodated
despite the required available space because
in contiguous no spanning is allowed.

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Key Points On Variable (or Dynamic) Partitioning in

Operating Systems

Variable (or dynamic) partitioning is a memory allocation technique that

allows memory partitions to be created and resized dynamically as needed.

The operating system maintains a table of free memory blocks or holes,

each of which represents a potential partition. When a process requests

memory, the operating system searches the table for a suitable hole that can

accommodate the requested amount of memory.

Dynamic partitioning reduces internal fragmentation by allocating memory

more efficiently, allows multiple processes to share the same memory

space, and is flexible in accommodating processes with varying memory

requirements.

However, dynamic partitioning can also lead to external fragmentation and

requires more complex memory management algorithms, which can make

it slower than fixed partitioning.

Understanding dynamic partitioning is essential for operating system

design and implementation, as well as for system-level programming.

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

2. Virtual Memory

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual Memory

Virtual Memory is a storage allocation scheme in which secondary

memory can be addressed as though it were part of the main memory. The

addresses a program may use to reference memory are distinguished from

the addresses the memory system uses to identify physical storage sites

and program-generated addresses are translated automatically to the

corresponding machine addresses.

The size of virtual storage is limited by the addressing scheme of the

computer system and the amount of secondary memory available not by

the actual number of main storage locations.

It is a technique that is implemented using both hardware and software.

It maps memory addresses used by a program, called virtual addresses,

into physical addresses in computer memory.

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual Memory

All memory references within a process are logical addresses that are

dynamically translated into physical addresses at run time. This means

that a process can be swapped in and out of the main memory such that

it occupies different places in the main memory at different times during

the course of execution.

A process may be broken into a number of pieces and these pieces

need not be continuously located in the main memory during execution.

The combination of dynamic run-time address translation and the use of

a page or segment table permits this.

If these characteristics are present then, it is not necessary that all the

pages or segments are present in the main memory during execution.

This means that the required pages need to be loaded into memory

whenever required. Virtual memory is implemented using Demand

Paging or Demand Segmentation.

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual Memory

Virtual memory – separation of user logical memory from physical memory

Only part of the program needs to be in memory for execution

Logical address space can therefore be much larger than physical address space

Allows address spaces to be shared by several processes

Allows for more efficient process creation

More programs running concurrently

Less I/O needed to load or swap processes

Virtual address space – logical view of how process is stored in memory

Usually start at address 0, contiguous addresses until end of space

Meanwhile, physical memory organized in page frames

MMU must map logical to physical

Virtual memory can be implemented via:

Demand paging

Demand segmentation

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual Memory That is Larger Than Physical Memory

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Virtual-address Space

Usually design logical address space for

stack to start at Max logical address and

grow “down” while heap grows “up”

Maximizes address space use

Unused address space between

the two is hole

 No physical memory needed

until heap or stack grows to a

given new page

Enables sparse address spaces with

holes left for growth, dynamically linked

libraries, etc

System libraries shared via mapping into

virtual address space

Shared memory by mapping pages read-

write into virtual address space

Pages can be shared during fork(),

speeding process creation

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Shared Library Using Virtual Memory

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Any Questions ?

Page Replacement Algorithms
FIFO, NRU, LRU, NFU...

Muhammad Daniyal Liaquat

Week 12

Operating System Concepts

What is page replacement?

• When memory located in secondary memory is
needed, it can be retrieved back to main memory.

• Process of storing data from main memory to
secondary memory ->swapping out

• Retrieving data back to main memory ->swapping
in

Basic Page Replacement

1. Find the location of the desired page on disk
2. Find a free frame:

- If there is a free frame, use it
- If there is no free frame, use a page replacement

algorithm to select a victim frame
- Write victim frame to disk if dirty

3. Bring the desired page into the (newly) free frame;
update the page and frame tables

4. Continue the process by restarting the instruction that
caused the trap

Note now potentially 2 page transfers for page fault –
increasing EAT

Fig: Page Replacement

What are Page Replacement

Algorithms?
• Deals with which pages need to be swapped out

and which are the ones that need to be swapped
in

• The efficiency lies in the least time that is wasted
for a page to be paged in

Types

• Local Page Replacement Strategy

• Global Page Replacement Strategy

Why we need a page replacement

algorithm?

• The main goal of page replacement algorithms is
to provide lowest page fault rate.

START

Send Page
request

Page found?
yesno

HITFAULT

STOPFetch page

Page and Frame Replacement Algorithms

Frame-allocation algorithm determines
How many frames to give each process

Which frames to replace

Page-replacement algorithm
Want lowest page-fault rate on both first access and re-access

Evaluate algorithm by running it on a particular string of

memory references (reference string) and computing the

number of page faults on that string
String is just page numbers, not full addresses

Repeated access to the same page does not cause a page fault

Results depend on number of frames available

In all our examples, the reference string of referenced

page numbers is

7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

No. of Page Faults Vs No. of Frames

Algorithms

• First In First Out

• Optimal Replacement

• Not Recently Used

• Second Chance

• Least Recently Used

• Not Frequently Used

First-In First-Out (FIFO)

• Pages in main memory are
kept in a list

• Newest page is in head and
the oldest in tail

• It does not take
advantage of page access
patterns or frequency

Fig: FIFO

First-In-First-Out (FIFO) Example

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory at a time per process)

•

• Can vary by reference string: consider 1,2,3,4,1,2,5,1,2,3,4,5

• Adding more frames can cause more page faults!

• How to track ages of pages?

• Just use a FIFO queue

• Page hit: no of hits/total no of refrence x 100

• Page fault: no of faults/total no of refrence x 100

15 page faults

Optimal Replacement (OPT)

• When the memory is full, evict a page that will
be unreferenced for the longest time

• The OS keeps track of all pages referenced by the
program

• Only if the program's memory reference pattern
is relatively consistent

OPTIMAL Example

Referenced last

HitHit Hit Hit Hit Hit

Fig: OPTIMAL example

• Replace page that will not be used for longest period of time
• 9 is optimal for the example

• How do you know this?
• Can’t read the future

• Used for measuring how well your algorithm performs

Not Recently Used (NRU)
• It favours keeping pages in memory that have been

recently used.

• The OS divides the pages into four classes based on usage
during the last clock tick:

3. Referenced, modified

2. Referenced, not modified

1. Not referenced, modified

0. Not referenced, not modified

• Pick a random page from the lowest category for
removal

• i.e. the not referenced, not modified page

NRU Example

Hit

Fig: NRU example

Recently
referenced Hit Hit Hit Hit Hit

Second Chance

• Modified version
of FIFO

• Instead of
swapping out the
last page, the
referenced bit is
checked

• Gives every page a
"second-chance"

Fig: Second Chance

Second-Chance (clock) Page-Replacement Algorithm

Least Recently Used (LRU) Algorithm

Use past knowledge rather than future
Replace page that has not been used in the most amount of time
Associate time of last use with each page

12 faults – better than FIFO but worse than OPT
Generally good algorithm and frequently used
But how to implement?

• It swaps the pages that have been used the least over a period of time.

• It is free from Belady’s anomaly.

LRU Algorithm (Cont.)

Counter implementation
Every page entry has a counter; every time page is referenced through this
entry, copy the clock into the counter
When a page needs to be changed, look at the counters to find smallest
value

Search through table needed

Stack implementation
Keep a stack of page numbers in a double link form:
Page referenced:

move it to the top
requires 6 pointers to be changed

But each update more expensive
No search for replacement

LRU and OPT are cases of stack algorithms
that don’t have Belady’s Anomaly

Use Of A Stack to Record Most Recent Page References

LRU Approximation Algorithms

• LRU needs special hardware and still slow
• Reference bit

• With each page associate a bit, initially = 0
• When page is referenced bit set to 1
• Replace any with reference bit = 0 (if one exists)

• We do not know the order, however

• Second-chance algorithm
• Generally FIFO, plus hardware-provided reference bit
• Clock replacement
• If page to be replaced has

• Reference bit = 0 -> replace it
• reference bit = 1 then:

• set reference bit 0, leave page in memory
• replace next page, subject to same rules

Not frequently used (NFU)

• This page replacement algorithm requires a
counter

• The counters keep track of how frequently a
page has been used

• The page with the lowest counter can be
swapped out

reference sequence : 3 2 3 0 8 4 2 5 0 9 8 3 2

P U 3 P U 2 P U 3 P U 0 P U 8 P U 4
+---+---+ +---+---+ +---+---+ +---+---+ +---+---++---+---+

| 3 | 1 |
+---+---+
| 2 | 1 |

+---+---+

| 0 | 1 |

| 3 | 1 |

+---+---+
| 2 | 1 |
+---+---+
| 0 | 1 |
+---+---+
| 8 | 1 |

+---+---+
| | 0 |*

| | 0 |*

+---+---+
| | 0 |
+---+---+
| | 0 |
+---+---+
| | 0 |
+---+---+
| | 0 |

+ + +

| 3 | 1 |

+---+---+
| | 0 |*
+---+---+
| | 0 |
+---+---+
| | 0 |
+---+---+
| | 0 |

+ + +

| 3 | 1 |

+---+---+
| 2 | 1 |
+---+---+
| | 0 |*
+---+---+
| | 0 |
+---+---+
| | 0 |

+ + +

| 3 | 1 |

+---+---+
| 2 | 1 |
+---+---+
| | 0 |*
+---+---+
| | 0 |
+---+---+
| | 0 |

+ + +

+---+---+

| | 0 |*
+---+---+
| | 0 |

+ + + + +

P U 2 P U 5 P U 0 P U 9 P U 8 P U 3
+---+---+ +---+---+ +---+---+

| 5 | 1 |

+---+---+

| 5 | 1 |

+---+---+

| 5 | 1 |
+---+---+

| 9 | 1 |

+---+---+

| 5 | 1 |
+---+---+

| 9 | 1 |
+---+---+

| 0 | 1 |*
+---+---+
| 8 | 1 |

+---+---+
| 4 | 0 |

| 3 | 1 |*

+---+---+
| 2 | 1 |
+---+---+
| 0 | 1 |
+---+---+
| 8 | 1 |
+---+---+
| 4 | 1 |

+ + +

| 3 | 1 |*

+---+---+
| 2 | 1 |
+---+---+
| 0 | 1 |
+---+---+
| 8 | 1 |
+---+---+
| 4 | 1 |

+ + +

+---+---+

| 2 | 0 |*
+---+---+
| 0 | 0 |
+---+---+
| 8 | 0 |
+---+---+
| 4 | 0 |

+ + +

+---+---+

| 2 | 0 |*
+---+---+
| 0 | 1 |
+---+---+
| 8 | 0 |
+---+---+
| 4 | 0 |

+ + +

+---+---+

| 0 | 1 |*
+---+---+
| 8 | 0 |
+---+---+
| 4 | 0 |

+ + + + +

P U 2 P U
+---+---+ +---+---+
| 5 | 1 |* | 5 | 0 |
| 9 | 1 | | 9 | 0 |
+---+---+ +---+---+
| 0 | 0 | | 2 | 1 |
+---+---+ +---+---+
| 8 | 0 | | 8 | 0 |*
+---+---+ +---+---+
| 3 | 1 | | 3 | 1 |
+---+---+ +---+---+

* = indicates the pointer which identifies the next location

to scan P = page# stored in that frame U = used flag

0 = not used recently 1 = referenced recently

Fig: NFU example

Conclusion

Algorithm Comment

• FIFO

• OPTIMAL

• LRU

• NRU

• NFU

• Second Chance

• CLOCK

• Might throw out important
pages

• Not implementable

• Excellent but difficult to
implement

• Crude approximation of LRU

• Crude approximation of LRU

• Big improvement over FIFO

• Realistic

References

• Web Links
www.wikipedia.com

www.youtube.com

www.vbForum.com

• Papers
Operating System Page Replacement Algorithms by

A. Frank C. Wersberg

• Books
Computer Organization & Architecture by William

Stallings

http://www.wikipedia.com/
http://www.youtube.com/
http://www.vbForum.com/

Reference video Web Links

FIFO
https://youtu.be/nkV11C8G998

https://youtu.be/16kaPQtYo28

OPTIMAL
https://youtu.be/LvBpXzqKWDE

https://youtu.be/jeJIKKQcqpU

For more details subscribe the computer science page on
YouTube.

https://youtu.be/nkV11C8G998
https://youtu.be/nkV11C8G998
https://youtu.be/16kaPQtYo28
https://youtu.be/jeJIKKQcqpU
https://youtu.be/LvBpXzqKWDE
https://youtu.be/jeJIKKQcqpU

Thank You

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 13

Operating System Concepts

Muhammad Daniyal Liaquat

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topic

Storage Management

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage Management

Storage Management is defined as it refers to the management of the data

storage equipment’s that are used to store the user/computer generated

data. Hence it is a tool or set of processes used by an administrator to keep

your data and storage equipment’s safe. Storage management is a process

for users to optimize the use of storage devices and to protect the integrity

of data for any media on which it resides and the category of storage

management generally contain the different type of subcategories covering

aspects such as security, virtualization and more, as well as different types

of provisioning or automation, which is generally made up the entire storage

management software market.

Storage management key attributes: Storage management

has some key attribute which is generally used to manage the storage

capacity of the system. These are given below:

1. Performance

2. Reliability

3. Recoverability

4. Capacity

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Feature of Storage management

There is some feature of storage management which is provided for storage capacity.

These are given below:

Storage management is a process that is used to optimize the use of storage devices.

Storage management must be allocated and managed as a resource in order to truly

benefit a corporation.

Storage management is generally a basic system component of information systems.

It is used to improve the performance of their data storage resources.

Advantage of storage management:
There are some advantage of storage management which are given below:

• It becomes very simple to manage a storage capacity.
• It generally reduces the time consumption.
• It improves the performance of system.
• In virtualization and automation technologies, it can help an

organization improve its agility.

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Overview of Mass Storage Structure

Magnetic disks provide bulk of secondary storage of modern computers

Drives rotate at 60 to 250 times per second

Transfer rate is rate at which data flow between drive and computer

Positioning time (random-access time) is time to move disk arm to

desired cylinder (seek time) and time for desired sector to rotate

under the disk head (rotational latency)

Head crash results from disk head making contact with the disk

surface -- That’s bad

Disks can be removable

Drive attached to computer via I/O bus

Busses vary, including EIDE, ATA, SATA, USB, Fibre Channel,

SCSI, SAS, Firewire

Host controller in computer uses bus to talk to disk controller built

into drive or storage array

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Moving-head Disk Mechanism

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Hard Disks

Platters range from .85” to 14” (historically)

Commonly 3.5”, 2.5”, and 1.8”

Range from 30GB to 3TB per drive

Performance

Transfer Rate – theoretical – 6 Gb/sec

Effective Transfer Rate – real –

1Gb/sec

Seek time from 3ms to 12ms – 9ms

common for desktop drives

Average seek time measured or

calculated based on 1/3 of tracks

Latency based on spindle speed

 1 / (RPM / 60) = 60 / RPM

Average latency = ½ latency
(From Wikipedia)

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The First Commercial Disk Drive

1956
IBM RAMDAC computer
included the IBM Model
350 disk storage system

5M (7 bit) characters
50 x 24” platters
Access time = < 1 second

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Solid-State Disks

Nonvolatile memory used like a hard drive

Many technology variations

Can be more reliable than HDDs

More expensive per MB

Maybe have shorter life span

Less capacity

But much faster

Busses can be too slow -> connect directly to PCI for example

No moving parts, so no seek time or rotational latency

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Magnetic Tape

Was early secondary-storage medium

Evolved from open spools to cartridges

Relatively permanent and holds large quantities of data

Access time slow

Random access ~1000 times slower than disk

Mainly used for backup, storage of infrequently-used data,

transfer medium between systems

Kept in spool and wound or rewound past read-write head

Once data under head, transfer rates comparable to disk

140MB/sec and greater

200GB to 1.5TB typical storage

Common technologies are LTO-{3,4,5} and T10000

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disk Structure

Disk drives are addressed as large 1-dimensional arrays of logical

blocks, where the logical block is the smallest unit of transfer

Low-level formatting creates logical blocks on physical media

The 1-dimensional array of logical blocks is mapped into the

sectors of the disk sequentially

Sector 0 is the first sector of the first track on the outermost

cylinder

Mapping proceeds in order through that track, then the rest of

the tracks in that cylinder, and then through the rest of the

cylinders from outermost to innermost

Logical to physical address should be easy

 Except for bad sectors

 Non-constant # of sectors per track via constant angular

velocity

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disk Attachment

Host-attached storage accessed through I/O ports talking to I/O

busses

SCSI itself is a bus, up to 16 devices on one cable, SCSI initiator

requests operation and SCSI targets perform tasks

Each target can have up to 8 logical units (disks attached to

device controller)

FC is high-speed serial architecture

Can be switched fabric with 24-bit address space – the basis of

storage area networks (SANs) in which many hosts attach to

many storage units

I/O directed to bus ID, device ID, logical unit (LUN)

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage Array

Can just attach disks, or arrays of disks

Storage Array has controller(s), provides features to attached

host(s)

Ports to connect hosts to array

Memory, controlling software (sometimes NVRAM, etc)

A few to thousands of disks

RAID, hot spares, hot swap (discussed later)

Shared storage -> more efficiency

Features found in some file systems

 Snaphots, clones, thin provisioning, replication,

deduplication, etc

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage Area Network

Common in large storage environments

Multiple hosts attached to multiple storage arrays - flexible

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Storage Area Network (Cont.)

SAN is one or more storage arrays

Connected to one or more Fibre Channel switches

Hosts also attach to the switches

Storage made available via LUN Masking from specific arrays

to specific servers

Easy to add or remove storage, add new host and allocate it

storage

Over low-latency Fibre Channel fabric

Why have separate storage networks and communications

networks?

Consider iSCSI, FCOE

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Network-Attached Storage

Network-attached storage (NAS) is storage made available over

a network rather than over a local connection (such as a bus)

Remotely attaching to file systems

NFS and CIFS are common protocols

Implemented via remote procedure calls (RPCs) between host

and storage over typically TCP or UDP on IP network

iSCSI protocol uses IP network to carry the SCSI protocol

Remotely attaching to devices (blocks)

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disk Scheduling

The operating system is responsible for using hardware efficiently — for the disk drives,

this means having a fast access time and disk bandwidth

Minimize seek time

Seek time seek distance

Disk bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the last transfer

There are many sources of disk I/O request

OS

System processes

Users processes

I/O request includes input or output mode, disk address, memory address, number of

sectors to transfer

OS maintains queue of requests, per disk or device

Idle disk can immediately work on I/O request, busy disk means work must queue

Optimization algorithms only make sense when a queue exists

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disk Scheduling (Cont.)

Note that drive controllers have small buffers and can manage a

queue of I/O requests (of varying “depth”)

Several algorithms exist to schedule the servicing of disk I/O

requests

The analysis is true for one or many platters

We illustrate scheduling algorithms with a request queue (0-199)

 98, 183, 37, 122, 14, 124, 65, 67

 Head pointer 53

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

FCFS

Illustration shows total head movement of 640 cylinders

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

SSTF

Shortest Seek Time First selects the request with the minimum

seek time from the current head position

SSTF scheduling is a form of SJF scheduling; may cause

starvation of some requests

Illustration shows total head movement of 236 cylinders

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

SCAN

The disk arm starts at one end of the disk, and moves toward the

other end, servicing requests until it gets to the other end of the

disk, where the head movement is reversed and servicing

continues.

SCAN algorithm Sometimes called the elevator algorithm

Illustration shows total head movement of 236 cylinders

But note that if requests are uniformly dense, largest density at

other end of disk and those wait the longest

7.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

SCAN (Cont.)

7.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Selecting a Disk-Scheduling Algorithm

SSTF is common and has a natural appeal

SCAN perform better for systems that place a heavy load on the disk

Less starvation

Performance depends on the number and types of requests

Requests for disk service can be influenced by the file-allocation method

And metadata layout

The disk-scheduling algorithm should be written as a separate module of

the operating system, allowing it to be replaced with a different algorithm

if necessary.

7.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disk Management

Low-level formatting, or physical formatting — Dividing a disk into sectors that the disk

controller can read and write

Each sector can hold header information, plus data, plus error correction code (ECC)

Usually 512 bytes of data but can be selectable

To use a disk to hold files, the operating system still needs to record its own data structures on the

disk

Partition the disk into one or more groups of cylinders, each treated as a logical disk

Logical formatting or “making a file system”

To increase efficiency most file systems group blocks into clusters

 Disk I/O done in blocks

 File I/O done in clusters

Raw disk access for apps that want to do their own block management, keep OS out of the way

(databases for example)

Boot block initializes system

The bootstrap is stored in ROM

Bootstrap loader program stored in boot blocks of boot partition

Methods such as sector sparing used to handle bad blocks.

7.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Stable-Storage Implementation

Write-ahead log scheme requires stable storage

Stable storage means data is never lost (due to failure, etc)

To implement stable storage:

Replicate information on more than one nonvolatile storage media

with independent failure modes

Update information in a controlled manner to ensure that we can

recover the stable data after any failure during data transfer or

recovery

Disk write has 1 of 3 outcomes

1. Successful completion - The data were written correctly on disk

2. Partial failure - A failure occurred in the midst of transfer, so only

some of the sectors were written with the new data, and the sector

being written during the failure may have been corrupted

3. Total failure - The failure occurred before the disk write started, so

the previous data values on the disk remain intact

7.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Stable-Storage Implementation (Cont.)

If failure occurs during block write, recovery procedure restores

block to consistent state

System maintains 2 physical blocks per logical block and

does the following:

1. Write to 1st physical

2. When successful, write to 2nd physical

3. Declare complete only after second write completes

successfully

Systems frequently use NVRAM as one physical to accelerate

7.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Limitations of storage management:

Limited physical storage capacity: Operating systems can only manage the

physical storage space that is available, and as such, there is a limit to how

much data can be stored.

Performance degradation with increased storage utilization: As more data is

stored, the system’s performance can decrease due to increased disk

access time, fragmentation, and other factors.

Complexity of storage management: Storage management can be complex,

especially as the size of the storage environment grows.

Cost: Storing large amounts of data can be expensive, and the cost of

additional storage capacity can add up quickly.

Security issues: Storing sensitive data can also present security risks, and

the operating system must have robust security features in place to prevent

unauthorized access to this data.

Backup and Recovery: Backup and recovery of data can also be

challenging, especially if the data is stored on multiple systems or devices.

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Any Questions ?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 14

Operating System Concepts

Muhammad Daniyal Liaquat

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topic

1. File System Concepts

2. Access Methods, Directory

Structures

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Concept

Contiguous logical address space

Types:

Data

 numeric

 character

 binary

Program

Contents defined by file’s creator

Many types

 Consider text file, source file, executable file

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Attributes

Name – only information kept in human-readable form

Identifier – unique tag (number) identifies file within file system

Type – needed for systems that support different types

Location – pointer to file location on device

Size – current file size

Protection – controls who can do reading, writing, executing

Time, date, and user identification – data for protection, security,

and usage monitoring

Information about files are kept in the directory structure, which is

maintained on the disk

Many variations, including extended file attributes such as file

checksum

Information kept in the directory structure

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File info Window on Mac OS X

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Operations

File is an abstract data type

Create

Write – at write pointer location

Read – at read pointer location

Reposition within file - seek

Delete

Truncate

Open(Fi) – search the directory structure on disk for entry Fi,

and move the content of entry to memory

Close (Fi) – move the content of entry Fi in memory to

directory structure on disk

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Open Files

Several pieces of data are needed to manage open files:

Open-file table: tracks open files

File pointer: pointer to last read/write location, per

process that has the file open

File-open count: counter of number of times a file is

open – to allow removal of data from open-file table when

last processes closes it

Disk location of the file: cache of data access information

Access rights: per-process access mode information

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Open File Locking

Provided by some operating systems and file systems

Similar to reader-writer locks

Shared lock similar to reader lock – several processes can

acquire concurrently

Exclusive lock similar to writer lock

Mediates access to a file

Mandatory or advisory:

Mandatory – access is denied depending on locks held and

requested

Advisory – processes can find status of locks and decide

what to do

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Locking Example – Java API

import java.io.*;

import java.nio.channels.*;

public class LockingExample {

 public static final boolean EXCLUSIVE = false;

 public static final boolean SHARED = true;

 public static void main(String arsg[]) throws IOException {

 FileLock sharedLock = null;

 FileLock exclusiveLock = null;

 try {

 RandomAccessFile raf = new RandomAccessFile("file.txt", "rw");

 // get the channel for the file

 FileChannel ch = raf.getChannel();

 // this locks the first half of the file - exclusive

 exclusiveLock = ch.lock(0, raf.length()/2, EXCLUSIVE);

 /** Now modify the data . . . */

 // release the lock

 exclusiveLock.release();

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Locking Example – Java API (Cont.)

 // this locks the second half of the file - shared

 sharedLock = ch.lock(raf.length()/2+1, raf.length(),
 SHARED);

 /** Now read the data . . . */

 // release the lock

 sharedLock.release();

 } catch (java.io.IOException ioe) {

 System.err.println(ioe);

 }finally {

 if (exclusiveLock != null)

 exclusiveLock.release();

 if (sharedLock != null)

 sharedLock.release();

 }

 }

}

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Types – Name, Extension

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Structure

None - sequence of words, bytes

Simple record structure

Lines

Fixed length

Variable length

Complex Structures

Formatted document

Relocatable load file

Can simulate last two with first method by inserting
appropriate control characters

Who decides:

Operating system

Program

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Sequential-access File

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Access Methods

Sequential Access
 read next

 write next

 reset

 no read after last write

 (rewrite)

Direct Access – file is fixed length logical records
 read n

 write n

 position to n

 read next

 write next

 rewrite n

 n = relative block number

Relative block numbers allow OS to decide where file should be placed

See allocation problem in Ch 12

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Simulation of Sequential Access on Direct-access File

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Structure

A collection of nodes containing information about all files

F 1 F 2
F 3

F 4

F n

Directory

Files

Both the directory structure and the files reside on disk

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Disk Structure

Disk can be subdivided into partitions

Disks or partitions can be RAID protected against failure

Disk or partition can be used raw – without a file system, or

formatted with a file system

Partitions also known as minidisks, slices

Entity containing file system known as a volume

Each volume containing file system also tracks that file

system’s info in device directory or volume table of contents

As well as general-purpose file systems there are many

special-purpose file systems, frequently all within the same

operating system or computer

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Directory Organization

Efficiency – locating a file quickly

Naming – convenient to users

Two users can have same name for different files

The same file can have several different names

Grouping – logical grouping of files by properties, (e.g., all Java programs,

all games, …)

The directory is organized logically to obtain

Operations Performed on Directory

Search for a file

Create a file

Delete a file

List a directory

Rename a file

Traverse the file system

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Single-Level Directory

A single directory for all users

Naming problem

Grouping problem

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Two-Level Directory

Separate directory for each user

Path name

Can have the same file name for different user

Efficient searching

No grouping capability

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories

Have shared subdirectories and files

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Acyclic-Graph Directories (Cont.)

Two different names (aliasing)

If dict deletes list dangling pointer

 Solutions:

Backpointers, so we can delete all pointers

Variable size records a problem

Backpointers using a daisy chain organization

Entry-hold-count solution

New directory entry type

Link – another name (pointer) to an existing file

Resolve the link – follow pointer to locate the file

7.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File System Mounting

A file system must be mounted before it can be accessed

A unmounted file system (i.e., Fig. 11-11(b)) is mounted at a

mount point

7.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Mount Point

7.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Sharing

Sharing of files on multi-user systems is desirable

Sharing may be done through a protection scheme

On distributed systems, files may be shared across a network

Network File System (NFS) is a common distributed file-sharing

method

If multi-user system

User IDs identify users, allowing permissions and

protections to be per-user

Group IDs allow users to be in groups, permitting group

access rights

Owner of a file / directory

Group of a file / directory

7.26 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Sharing – Remote File Systems

Uses networking to allow file system access between systems

Manually via programs like FTP

Automatically, seamlessly using distributed file systems

Semi automatically via the world wide web

Client-server model allows clients to mount remote file systems from

servers

Server can serve multiple clients

Client and user-on-client identification is insecure or complicated

NFS is standard UNIX client-server file sharing protocol

CIFS is standard Windows protocol

Standard operating system file calls are translated into remote calls

Distributed Information Systems (distributed naming services) such

as LDAP, DNS, NIS, Active Directory implement unified access to

information needed for remote computing

7.27 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

File Sharing – Failure Modes

All file systems have failure modes

For example corruption of directory structures or other non-

user data, called metadata

Remote file systems add new failure modes, due to network

failure, server failure

Recovery from failure can involve state information about

status of each remote request

Stateless protocols such as NFS v3 include all information in

each request, allowing easy recovery but less security

7.28 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Protection

File owner/creator should be able to control:

what can be done

by whom

Types of access

Read

Write

Execute

Append

Delete

List

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Any Questions ?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 15

Operating System Concepts

Muhammad Daniyal Liaquat

7.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topic

Networking

Security

7.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Networking

Windows 7 supports both peer-to-peer and client/server

networking; it also has facilities for network management.

To describe networking in Windows 7, we refer to two of the

internal networking interfaces:

NDIS (Network Device Interface Specification) — Separates

network adapters from the transport protocols so that either

can be changed without affecting the other.

TDI (Transport Driver Interface) — Enables any session layer

component to use any available transport mechanism.

Windows 7 implements transport protocols as drivers that can be

loaded and unloaded from the system dynamically.

7.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Networking — Protocols

The server message block (SMB) protocol is used to send I/O requests over the network. It has

four message types:

1. Session control

2. File

3. Printer

4. Message

The network basic Input/Output system (NetBIOS) is a hardware abstraction interface for

networks

Used to:

 Establish logical names on the network

 Establish logical connections of sessions between two logical names on the network

 Support reliable data transfer for a session via NetBIOS requests or SMBs.

Windows 7 uses the TCP/IP Internet protocol version 4 and version 6 to connect to a wide

variety of operating systems and hardware platforms.

PPTP (Point-to-Point Tunneling Protocol) is used to communicate between Remote Access

Server modules running on Windows 7 machines that are connected over the Internet.

The Data Link Control protocol (DLC) is used to access IBM mainframes and HP printers that

are directly connected to the network (possible on 32-bit only versions using unsigned drivers).

7.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Networking — Distributed Processing Mechanisms

Windows 7 supports distributed applications via named NetBIOS, named pipes

and mailslots, Windows Sockets, Remote Procedure Calls (RPC), and Network

Dynamic Data Exchange (NetDDE).

NetBIOS applications can communicate over the network using TCP/IP.

Named pipes are connection-oriented messaging mechanism that are named via

the uniform naming convention (UNC).

Mailslots are a connectionless messaging mechanism that are used for broadcast

applications, such as for finding components on the network.

Winsock, the windows sockets API, is a session-layer interface that provides a

standardized interface to many transport protocols that may have different

addressing schemes.

The Windows 7 RPC mechanism follows the widely-used Distributed

Computing Environment standard for RPC messages, so programs written to use

Windows 7 RPCs are very portable.

RPC messages are sent using NetBIOS, or Winsock on TCP/IP networks,

or named pipes on LAN Manager networks.

Windows 7 provides the Microsoft Interface Definition Language(MIDL)

to describe the remote procedure names, arguments, and results.

7.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Networking — Domains
NT uses the concept of a domain to manage global access rights within groups.

A domain is a group of machines running NT server that share a common security

policy and user database.

Windows 7 provides three models of setting up trust relationships

One way, A trusts B

Two way, transitive, A trusts B, B trusts C so A, B, C trust each other

Crosslink – allows authentication to bypass hierarchy to cut down on

authentication traffic.

Networking — Redirectors and Servers

In Windows 7, an application can use the Windows 7 I/O API to access files from a remote

computer as if they were local, provided that the remote computer is running an MS-NET server.

A redirector is the client-side object that forwards I/O requests to remote files, where they are

satisfied by a server.

For performance and security, the redirectors and servers run in kernel mode.

7.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Name Resolution in TCP/IP Networks

On an IP network, name resolution is the process of converting

a computer name to an IP address

e.g., www.bell-labs.com resolves to 135.104.1.14

Windows 7 provides several methods of name resolution:

Windows Internet Name Service (WINS)

broadcast name resolution (BNR)

domain name system (DNS)

a host file

an LMHOSTS file

WINS consists of two or more WINS servers that maintain a

dynamic database of name to IP address bindings, and client

software to query the servers.

WINS uses the Dynamic Host Configuration Protocol (DHCP),

which automatically updates address configurations in the

WINS database, without user or administrator intervention.

7.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Security and Problem

System secure if resources used and accessed as intended

under all circumstances

Unachievable

Intruders (crackers) attempt to breach security

Threat is potential security violation

Attack is attempt to breach security

Attack can be accidental or malicious

Easier to protect against accidental than malicious misuse

7.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Security Violation Categories

Breach of confidentiality

Unauthorized reading of data

Breach of integrity

Unauthorized modification of data

Breach of availability

Unauthorized destruction of data

Theft of service

Unauthorized use of resources

Denial of service (DOS)

Prevention of legitimate use

7.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Security Violation Methods

Masquerading (breach authentication)

Pretending to be an authorized user to escalate privileges

Replay attack

As is or with message modification

Man-in-the-middle attack

Intruder sits in data flow, masquerading as sender to receiver

and vice versa

Session hijacking

Intercept an already-established session to bypass

authentication

7.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Standard Security Attacks

7.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Security Measure Levels

Impossible to have absolute security, but make cost to

perpetrator sufficiently high to deter most intruders

Security must occur at four levels to be effective:

Physical

 Data centers, servers, connected terminals

Human

 Avoid social engineering, phishing, dumpster diving

Operating System

 Protection mechanisms, debugging

Network

 Intercepted communications, interruption, DOS

Security is as weak as the weakest link in the chain

But can too much security be a problem?

7.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Program Threats

Many variations, many names

Trojan Horse

Code segment that misuses its environment

Exploits mechanisms for allowing programs written by users to be

executed by other users

Spyware, pop-up browser windows, covert channels

Up to 80% of spam delivered by spyware-infected systems

Trap Door

Specific user identifier or password that circumvents normal

security procedures

Could be included in a compiler

How to detect them?

7.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Program Threats (Cont.)

Logic Bomb

Program that initiates a security incident under certain

circumstances

Stack and Buffer Overflow

Exploits a bug in a program (overflow either the stack or

memory buffers)

Failure to check bounds on inputs, arguments

Write past arguments on the stack into the return address

on stack

When routine returns from call, returns to hacked address

 Pointed to code loaded onto stack that executes

malicious code

Unauthorized user or privilege escalation

7.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Program Threats (Cont.)

Viruses

Code fragment embedded in legitimate program

Self-replicating, designed to infect other computers

Very specific to CPU architecture, operating system, applications

Usually borne via email or as a macro

Visual Basic Macro to reformat hard drive

Sub AutoOpen()

Dim oFS

 Set oFS = CreateObject(’’Scripting.FileSystemObject’’)

 vs = Shell(’’c:command.com /k format c:’’,vbHide)

End Sub

7.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Program Threats (Cont.)

Virus dropper inserts virus onto the system

Many categories of viruses, literally many thousands of viruses

File / parasitic

Boot / memory

Macro

Source code

Polymorphic to avoid having a virus signature

Encrypted

Tunneling

7.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System and Network Threats

Worms – use spawn mechanism; standalone program

Internet worm

Exploited UNIX networking features (remote access) and bugs

in finger and sendmail programs

Exploited trust-relationship mechanism used by rsh to access

friendly systems without use of password

Grappling hook program uploaded main worm program

 99 lines of C code

Hooked system then uploaded main code, tried to attack

connected systems

Also tried to break into other users accounts on local system via

password guessing

If target system already infected, abort, except for every 7th time

7.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The Morris Internet Worm

7.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System and Network Threats (Cont.)

Port scanning

Automated attempt to connect to a range of ports on one

or a range of IP addresses

Detection of answering service protocol

Detection of OS and version running on system

nmap scans all ports in a given IP range for a response

nessus has a database of protocols and bugs (and

exploits) to apply against a system

Frequently launched from zombie systems

 To decrease trace-ability

7.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

System and Network Threats (Cont.)

Denial of Service

Overload the targeted computer preventing it from doing any

useful work

Distributed denial-of-service (DDOS) come from multiple

sites at once

Consider the start of the IP-connection handshake (SYN)

 How many started-connections can the OS handle?

Consider traffic to a web site

 How can you tell the difference between being a target

and being really popular?

Accidental – CS students writing bad fork() code

Purposeful – extortion, punishment

7.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Cryptography

Means to constrain potential senders (sources) and / or

receivers (destinations) of messages

Based on secrets (keys)

Enables

 Confirmation of source

 Receipt only by certain destination

 Trust relationship between sender and receiver

7.22 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Encryption

Constrains the set of possible receivers of a message

Encryption algorithm consists of

Set K of keys

Set M of Messages

Set C of ciphertexts (encrypted messages)

Symmetric Encryption
Same key used to encrypt and decrypt

Therefore k must be kept secret

DES was most commonly used symmetric block-encryption algorithm (created by US Govt)

Encrypts a block of data at a time

Keys too short so now considered insecure

Triple-DES considered more secure

Algorithm used 3 times using 2 or 3 keys

2001 NIST adopted new block cipher - Advanced Encryption Standard (AES)

Keys of 128, 192, or 256 bits, works on 128 bit blocks

RC4 is most common symmetric stream cipher, but known to have vulnerabilities

Encrypts/decrypts a stream of bytes (i.e., wireless transmission)

Key is a input to pseudo-random-bit generator

 Generates an infinite keystream

7.23 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Asymmetric Encryption

Public-key encryption based on each user having two keys:

public key – published key used to encrypt data

private key – key known only to individual user used to decrypt data

Must be an encryption scheme that can be made public without making it easy to

figure out the decryption scheme

Most common is RSA block cipher

Efficient algorithm for testing whether or not a number is prime

No efficient algorithm is know for finding the prime factors of a number.

Formally, it is computationally infeasible to derive kd,N from ke,N, and so ke need not

be kept secret and can be widely disseminated

ke is the public key

kd is the private key

N is the product of two large, randomly chosen prime numbers p and q (for

example, p and q are 512 bits each)

7.24 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Firewalling to Protect Systems and Networks

A network firewall is placed between trusted and untrusted hosts

The firewall limits network access between these two security
domains

Can be tunneled or spoofed

Tunneling allows disallowed protocol to travel within allowed
protocol (i.e., telnet inside of HTTP)

Firewall rules typically based on host name or IP address
which can be spoofed

Personal firewall is software layer on given host

Can monitor / limit traffic to and from the host

Application proxy firewall understands application protocol and
can control them (i.e., SMTP)

System-call firewall monitors all important system calls and apply
rules to them (i.e., this program can execute that system call)

7.25 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Computer Security Classifications

U.S. Department of Defense outlines four divisions of computer

security: A, B, C, and D

D – Minimal security

C – Provides discretionary protection through auditing

Divided into C1 and C2

 C1 identifies cooperating users with the same level of

protection

 C2 allows user-level access control

B – All the properties of C, however each object may have

unique sensitivity labels

Divided into B1, B2, and B3

A – Uses formal design and verification techniques to ensure

security

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Any Questions ?

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Week 16

Operating System Concepts

Muhammad Daniyal Liaquat

17.2 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Topics

Distributed Systems

Distributed System Structure

Distributed File Structures

17.3 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Distributed system

n Distributed system is collection of loosely coupled processors

interconnected by a communications network

n Processors variously called nodes, computers, machines, hosts

l Site is location of the processor

l Generally a server has a resource a client node at a different

site wants to use

17.4 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Reasons for Distributed Systems

Reasons for distributed systems

Resource sharing

 Sharing and printing files at remote sites

 Processing information in a distributed database

 Using remote specialized hardware devices

Computation speedup – load sharing or job migration

Reliability – detect and recover from site failure, function

transfer, reintegrate failed site

Communication – message passing

 All higher-level functions of a standalone system can be

expanded to encompass a distributed system

Computers can be downsized, more flexibility, better user

interfaces and easier maintenance by moving from large system

to multiple smaller systems performing distributed computing

17.5 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Types of Distributed Operating Systems

Network Operating Systems

Distributed Operating Systems

17.6 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Network-Operating Systems

Users are aware of multiplicity of machines

Access to resources of various machines is done explicitly

by:

Remote logging into the appropriate remote machine

(telnet, ssh)

Remote Desktop (Microsoft Windows)

Transferring data from remote machines to local

machines, via the File Transfer Protocol (FTP)

mechanism

Users must change paradigms – establish a session, give

network-based commands

More difficult for users

17.7 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Distributed-Operating Systems

Users not aware of multiplicity of machines

Access to remote resources similar to access to local

resources

Data Migration – transfer data by transferring entire file, or

transferring only those portions of the file necessary for the

immediate task

Computation Migration – transfer the computation, rather

than the data, across the system

Via remote procedure calls (RPCs)

or via messaging system

17.8 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Distributed-Operating Systems (Cont.)

Process Migration – execute an entire process, or parts of it, at

different sites

Load balancing – distribute processes across network to

even the workload

Computation speedup – subprocesses can run concurrently

on different sites

Hardware preference – process execution may require

specialized processor

Software preference – required software may be available at

only a particular site

Data access – run process remotely, rather than transfer all

data locally

Consider the World Wide Web

17.9 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Distributed System Structure of Network

Local-Area Network (LAN) – designed to cover small geographical

area

Multiple topologies like star or ring

Speeds from 1Mb per second (Appletalk, bluetooth) to 40 Gbps for

fastest Ethernet over twisted pair copper or optical fibre

Consists of multiple computers (mainframes through mobile

devices), peripherals (printers, storage arrays), routers

(specialized network communication processors) providing access

to other networks

Ethernet most common way to construct LANs

 Multiaccess bus-based

 Defined by standard IEEE 802.3

Wireless spectrum (WiFi) increasingly used for networking

 I.e. IEEE 802.11g standard implemented at 54 Mbps

17.10 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Local-area Network

17.11 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Network Types (Cont.)

Wide-Area Network (WAN) – links geographically separated sites

Point-to-point connections over long-haul lines (often leased from

a phone company)

 Implemented via connection processors known as routers

Internet WAN enables hosts world wide to communicate

 Hosts differ in all dimensions but WAN allows communications

Speeds

 T1 link is 1.544 Megabits per second

 T3 is 28 x T1s = 45 Mbps

 OC-12 is 622 Mbps

WANs and LANs interconnect, similar to cell phone network:

 Cell phones use radio waves to cell towers

 Towers connect to other towers and hubs

17.12 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Communication Processors in a Wide-Area Network

17.13 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Routing Strategies

Fixed routing - A path from A to B is specified in advance; path

changes only if a hardware failure disables it

Since the shortest path is usually chosen, communication

costs are minimized

Fixed routing cannot adapt to load changes

Ensures that messages will be delivered in the order in which

they were sent

Virtual routing- A path from A to B is fixed for the duration of

one session. Different sessions involving messages from A to B

may have different paths

Partial remedy to adapting to load changes

Ensures that messages will be delivered in the order in which

they were sent

17.14 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Routing Strategies (Cont.)

Dynamic routing - The path used to send a message form site

A to site B is chosen only when a message is sent

Usually a site sends a message to another site on the link

least used at that particular time

Adapts to load changes by avoiding routing messages on

heavily used path

Messages may arrive out of order

 This problem can be remedied by appending a sequence

number to each message

Most complex to set up

Tradeoffs mean all methods are used

UNIX provides ability to mix fixed and dynamic

Hosts may have fixed routes and gateways connecting

networks together may have dynamic routes

17.15 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Routing Strategies (Cont.)

Router is communications processor responsible for routing messages

Must have at least 2 network connections

Maybe special purpose or just function running on host

Checks its tables to determine where destination host is, where to send

messages

Static routing – table only changed manually

Dynamic routing – table changed via routing protocol

More recently, routing managed by intelligent software more

intelligently than routing protocols

OpenFlow is device-independent, allowing developers to introduce

network efficiencies by decoupling data-routing decisions from

underlying network devices

Messages vary in length – simplified design breaks them into packets

(or frames, or datagrams)

Connectionless message is just one packet

Otherwise need a connection to get a multi-packet message from

source to destination.

17.16 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Connection Strategies

Circuit switching - A permanent physical link is established for

the duration of the communication (i.e., telephone system)

Message switching - A temporary link is established for the

duration of one message transfer (i.e., post-office mailing

system)

Packet switching - Messages of variable length are divided

into fixed-length packets which are sent to the destination

 Each packet may take a different path through the network

The packets must be reassembled into messages as they

arrive

Circuit switching requires setup time, but incurs less overhead

for shipping each message, and may waste network bandwidth

Message and packet switching require less setup time, but

incur more overhead per message

17.17 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Distributed File System

Distributed file system (DFS) – a distributed

implementation of the classical time-sharing model of a file

system, where multiple users share files and storage

resources

A DFS manages set of dispersed storage devices

Overall storage space managed by a DFS is composed of

different, remotely located, smaller storage spaces

There is usually a correspondence between constituent

storage spaces and sets of files

Challenges include:

Naming and Transparency

Remote File Access

17.18 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

DFS Structure

Service – software entity running on one or more machines

and providing a particular type of function to a priori

unknown clients

Server – service software running on a single machine

Client – process that can invoke a service using a set of

operations that forms its client interface

A client interface for a file service is formed by a set of

primitive file operations (create, delete, read, write)

Client interface of a DFS should be transparent, i.e., not

distinguish between local and remote files

Sometimes lower level intermachine interface need for

cross-machine interaction

17.19 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Naming and Transparency

Naming – mapping between logical and physical objects

Multilevel mapping – abstraction of a file that hides the

details of how and where on the disk the file is actually

stored

A transparent DFS hides the location where in the network

the file is stored

For a file being replicated in several sites, the mapping

returns a set of the locations of this file’s replicas; both the

existence of multiple copies and their location are hidden

Naming Structures
Location transparency – file name does not reveal the

file’s physical storage location

Location independence – file name does not need to be

changed when the file’s physical storage location

changes

17.20 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Naming Schemes — Three Main Approaches

Files named by combination of their host name and local name;

guarantees a unique system-wide name

Attach remote directories to local directories, giving the

appearance of a coherent directory tree; only previously mounted

remote directories can be accessed transparently

Total integration of the component file systems

A single global name structure spans all the files in the system

If a server is unavailable, some arbitrary set of directories on

different machines also becomes unavailable

In practice most DFSs use static, location-transparent mapping for

user-level names

Some support file migration

Hadoop supports file migration but without following POSIX

standards

17.21 Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

Remote File Access

Remote-service mechanism is one transfer approach

Reduce network traffic by retaining recently accessed disk blocks

in a cache, so that repeated accesses to the same information

can be handled locally

If needed data not already cached, a copy of data is brought

from the server to the user

Accesses are performed on the cached copy

Files identified with one master copy residing at the server

machine, but copies of (parts of) the file are scattered in

different caches

Cache-consistency problem – keeping the cached copies

consistent with the master file

 Could be called network virtual memory

Silberschatz, Galvin and Gagne ©2013Operating System Concepts – 9th Edition

The End of the Course..

Any Questions ?

