Search Algorithms

Search Algorithm

* Uninformed:
* Breadth-first search
* Uninform-cost search
» Depth-first search

 Heuristic-based:

* Greedy best-first search function GRAPH-SEARCH(problem) returns a solution, or failure
% initialize the frontier using the initial state of problem
* A* Search initialize the explored set to be empty
loop do

if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

Uninformed Search Strategies

e Also called ‘blind search’

 the strategies have no additional information about states beyond that
provided in the problem definition.

* All they can do is generate successors and distinguish a goal state from a
non-goal state.

* All search strategies are distinguished by the order in which nodes are

expanded. B E I

* Strategies that know whether one non-goal state is “more promising” than
another are called informed search or heuristic search strategies

Breadth-first search

. Preadth—first search is a simple strategy in which the root node is expanded
irst

* then all the successors of the root node are expanded next, then their successors, and so
on. In general,

e all the nodes are expanded at a given depth in the search tree before any
nodes at the next level are expanded.

>® ®
DB ©

Figure 3.12 Breadth-first search on a simple binary tree. At each stage, the node to be
expanded next is indicated by a marker.

* This is achieved very simply by using a FIFO queue for the frontier

Cont.

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node < a node with STATE = problem .INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier «— a FIFO queue with node as the only element
explored < an empty set
loop do
if EMPTY?(frontier) then return failure
node < POP(frontier) /[* chooses the shallowest node in frontier */
add node.STATE to explored
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child.STATE is not in explored or frontier then
if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier « INSERT(child, frontier)

Cont.

 Disadvantage is Space and Time Complexity O (b9)

* When all step costs are equal, breadth-first search is optimal because it always
expands the shallowest unexpanded node

 However, real world problem may not have equal cost.

Uniform cost search

* Instead of expanding the shallowest node, uniform-cost search
expands the node n with the lowest path cost g(n).

* This is done by storing the frontier as a priority queue ordered by g

* Uniform-cost search does not care about the number of steps a path
has, but only about their total cost

https://www.youtube.com/watch?v=XyoucHYKYSE&ab channel=Sha
ulMarkovitch

https://www.youtube.com/watch?v=XyoucHYKYSE&ab_channel=ShaulMarkovitch

UCS Algorithm

function UNIFORM-COST-SEARCH(problem) returns a solution, or failure

node < a node with STATE = problem.INITIAL-STATE, PATH-COST =0
frontier «— a priority queue ordered by PATH-COST, with node as the only element
explored «+— an empty set
loop do
if EMPTY?(frontier) then return failure
node «— POP(frontier) /[* chooses the lowest-cost node in frontier */
if problem .GOAL-TEST(node.STATE) then return SOLUTION(node)
add node.STATE to explored //Print the content of priority queue
for each action in problem.ACTIONS(node.STATE) do
child < CHILD-NODE(problem, node, action)
if child.STATE is not in ezplored or frontier then
frontier < INSERT(child, frontier)
else if child .STATE is in frontier with higher PATH-COST then
replace that frontier node with child

Depth First Search

* Depth-first search always expands the
deepest node in the current frontier of
the search tree.

* The search proceeds immediately to the
deepest level of the search tree, where
the nodes have no successors.

* As those nodes are expanded, they are
dropped from the frontier, so then the
search “backs up” to the next deepest
node that still has unexplored successors.

* BFS uses a FIFI queue, depth-first search
uses a LIFO queue (stack)

Advantage of DFS over BFS — space
complexity

* DFS has advantage over BFS when searching in a tree (not in graph)

* In case of tree search, DFS needs to store only a single path from the
root to a leaf node, along with the remaining unexpanded sibling
nodes for each node on the path.

* Once a node has been expanded, it can be removed from memory as
soon as its descendants have been fully explored.

<
td
&
L
&
®

