
Chapter 3

3.1

Data and Signals



Introduction

 Physical layer is responsible to perform various
functions.

 One of its major functions is to move data in form of
electromagnetic signals across a transmission
medium.
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medium.

 Data must be transformed to electromagnetic signals
to be transmitted.



Analog and Digital Data

 Data can be analog or digital.

 The term analog data refers to information that is
continuous.

 Digital data refers to information that has discrete
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states.

 Example 1: Analog and digital clock

 Example 2: Speech signal and data stored in
computer memory in form of 0s and 1s.



Analog and Digital Signal

 Signals can be analog or digital.

 Analog signals can have an infinite number of values
in a range.

 Digital signals can have only a limited
number of values.

3.4
Figure 3.1  Comparison of analog and digital signals



Periodic and Non-periodic Signals

 Both analog and digital signals can take one of the
two forms:
 Periodic

 Non-periodic (aperiodic)

 A periodic signal complete a pattern within a
measurable time called period and repeats that pattern
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measurable time called period and repeats that pattern
over time.

 The completion of one full pattern is called a cycle.

 A non-periodic signal change without exhibiting a
pattern or cycle that repeats over time



Periodic Analog Signals

 In data communications, we commonly use periodic
analog signals and non-periodic digital signals.

 Periodic analog signals can be classified as simple or
composite.

 A simple periodic analog signal, a sine wave, cannot
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 A simple periodic analog signal, a sine wave, cannot
be decomposed into simpler signals.

 A composite periodic analog signal is composed of
multiple sine waves.



Sine Wave

 The sine wave is the most fundamental form of a
periodic analog signal.

 A sine wave can be represented by three parameters:
peak amplitude, frequency, and phase.
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Figure 3.2  A sine wave



Peak Amplitude

 The peak amplitude of a signal is the absolute value
of its highest intensity, proportional to the energy it
carries.

 For electric signals, peak amplitude is normally
measured in volts.
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 Example 3.1: In Pakistan the power can be represented
by a sine wave with peak amplitude of 170 to 220 volts,
however in US it is 110 to 120 volts.

 Example 3.2: The voltage of battery is constant which is
considered as sine wave. The peak value of an AA battery
is 1.5 volts.



Peak Amplitude (Conti…)
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Figure 3.3  Two signals with the same phase and frequency, 
but different amplitudes



Period and Frequency

 Period (T) or time period refers to the amount of
time (in seconds) a single needs to complete 1 cycle.

 Frequency (f) refers to the number of periods in 1 sec.

 Note: Both period and frequency are just one
characteristic defined in two ways.

3.10

characteristic defined in two ways.

 Periods is express in seconds while frequency in
Hertz (Hz) or cycle per second

 Frequency and period are inverse of each other.



Period and Frequency (Conti…)

Table 3.1  Units of period and frequency
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Period and Frequency (Conti…)

3.12

Figure 3.4  Two signals with the same amplitude and phase, but different frequencies



Example 3.3: The power we use at home has a frequency
of 60 Hz. The period of this sine wave can be determined
as follows:

Solution:

Period and Frequency (Conti…)

3.13

Solution:

16.6 x 10
-3

= 16.6 ms



Example 3.4: Express a period of 100 ms in
microseconds.

Solution:
We know that:

Period and Frequency (Conti…)
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We know that:

1 ms = 10
-3

s and 1 s = 10
6 µs

So
100 ms = 100 x 10

-3 s = 100 x 10
-3 x 10

6 µs
= 10

2 x 10
-3 x 10

6 µs
= 10

5 µs



Example 3.5: The period of a signal is 100 ms. What is its
frequency in kilohertz?

Period and Frequency (Conti…)

Solution
First we change 100 ms to seconds, and then we calculate
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First we change 100 ms to seconds, and then we calculate
the frequency from the period (1 Hz = 10−3 kHz).



Period and Frequency (Conti…)

 Frequency is the rate of change with respect to time.

 Change in a short span of time means high frequency.

 Change over a long span of time means low
frequency.
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 If a signal does not change at all, its frequency is
zero.

 If a signal changes instantaneously, its frequency is
infinite.



Phase

 The term phase describes the position of the
waveform relative to time 0.

 It indicates the status of the first cycle.

 Phase is measured in degrees or radians
 360 degrees = 2π rad
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 1 degree = 2π/360 rad

 1 rad = 360/2π rad

 Phase shift of 360 degrees – complete period shift

 Phase shift of 180 degree – one-half period shift

 Phase shift of 90 degree – one-quarter period shift



Phase (Conti…)
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Figure 3.5  Three sine waves with the same amplitude and frequency,
but different phases



Phase (Conti…)

Example 3.6: A sine wave is offset 1/6 cycle with
respect to time 0. What is its phase in degrees and
radians?

Solution
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Solution

We know that 1 complete cycle is 360°. Therefore, 1/6
cycle is



Wavelength

 Wavelength is another of a signal traveling through a
transmission medium.

 It binds the period or frequency of a simple sine wave
to the propagation speed of the medium.

 Frequency is independent of the medium but

3.20

 Frequency is independent of the medium but
wavelength depends on both frequency and medium.

 Wavelength is the distance a simple signal can travel
in one period.

 Wavelength is measured normally in micrometers
(µm) instead of meters.



Wavelength (Conti…)
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Figure 3.6  Wavelength and period



Wavelength (Conti…)

 Wavelength can be calculated if propagation speed
(speed of light) and period or frequency of the signal
are known.

Wavelength = Propagation Speed x period = Propagation Speed/Frequency

λ = c / f
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Example: The wavelength of a red light (frequency is 4
x 1014) in air is:

Solution:

λ = c / f = 3 x 108 / 4 x 1014

= 0.75 x 10−6 m = 0.75 µm



Time and Frequency Domains

 A sine wave is defined by its amplitude, frequency, and
phase.

 Time-domain plots are used to show the changes in signal
amplitude with respect to time i.e. amplitude-versus-time
plot).

 Phase is not explicitly shown on time-domain plots.
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 Phase is not explicitly shown on time-domain plots.

 Frequency-domain plots are used to show the relationship
between amplitude and frequency.

 It is concerned with only the peak value and frequency.

 A complete sine wave in the time domain can be
represented by one single spike in the frequency domain.



Time and Frequency Domains (Conti…)
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Figure 3.7  The time-domain and frequency-domain plots of a sine wave



Time and Frequency Domains (Conti…)

Example 3.7: The frequency domain is more compact
and useful when we are dealing with more than one sine
wave. For example, Figure 3.8 shows three sine waves,
each with different amplitude and frequency. All can be
represented by three spikes in the frequency domain.
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Time and Frequency Domains (Conti…)
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Figure 3.8  The time domain and frequency domain of three sine waves



Composite Signals

 A single-frequency sine wave is not useful in data
communications.

 We need to send a composite signal, a signal made of
many simple sine waves.

 In early 1900s, the French mathematician Jean-Baptiste
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 In early 1900s, the French mathematician Jean-Baptiste
Fourier showed that any composite signal is actually a
combination of simple sine waves with different
frequencies, amplitudes, and phases.



Composite Signals (Conti…)

 A composite signal can periodic or aperiodic.

 If the composite signal is periodic, the decomposition
gives a series of signals with discrete frequencies.

 If the composite signal is aperiodic, the
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decomposition gives a combination of sine waves
with continuous frequencies.



Composite Signals (Conti…)

Example 3.8: Figure 3.9 shows a periodic composite
signal with frequency f. This type of signal is not typical
of those found in data communications. We can
consider it to be three alarm systems, each with a
different frequency. The analysis of this signal can give
us a good understanding of how to decompose signals.
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us a good understanding of how to decompose signals.



Composite Signals (Conti…)
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Figure 3.9  A composite periodic signal



Composite Signals (Conti…)
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Figure 3.10  Decomposition of a composite periodic signal in the time and
frequency domains



Composite Signals (Conti…)

 The frequency of sine wave with frequency f is the
same as the frequency of the composite signal, known
as fundamental frequency or first harmonic.

 Sine wave with frequency 3f has a frequency 3 times
of the fundamental frequency known as 3rd
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of the fundamental frequency known as 3rd
harmonic.

 The third sine wave with frequency 9f has a frequecy
of 9 times the fundamental frequency, known as 9th
harmonic.



Composite Signals (Conti…)

Example 3.9: Figure 3.11 shows a aperiodic composite
signal. It can be the signal created by a microphone or a
telephone set when a word or two is pronounced. In this
case, the composite signal cannot be periodic, because
that implies that we are repeating the same word or
words with exactly the same tone.
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words with exactly the same tone.

Figure 3.11  The time and frequency domains of a nonperiodic signal



Composite Signals (Conti…)

 In time-domain representation of this composite
signal, there are an infinite number of simple sine
frequency.

 Although the number of frequencies in human voice
is infinite, but the range is limited.
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is infinite, but the range is limited.

 A normal human being can create a continuous range
of frequencies between 0 to 4 KHz.



Bandwidth

 The range of frequencies contained in a composite
signal is its bandwidth.

 The bandwidth of a composite signal is the difference
between the highest and the lowest frequencies
contained in that signal.
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contained in that signal.

 For Example: If a composite signal contains
frequencies between 1000Hz and 5000 Hz, then its
bandwidth is 5000Hz – 1000Hz = 4000Hz.



Bandwidth (Conti…)
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Figure 3.12  The bandwidth of periodic and nonperiodic composite signals



Bandwidth (Conti…)

Example 3.10: If a periodic signal is decomposed into
five sine waves with frequencies of 100, 300, 500, 700,
and 900 Hz, what is its bandwidth? Draw the spectrum,
assuming all components have a maximum amplitude of
10 V.

Solution
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Solution

Let fh be the highest frequency, fl the lowest frequency,
and B the bandwidth. Then



Bandwidth (Conti…)

The spectrum has only five spikes, at 100, 300, 500, 700,
and 900 Hz (see Figure 3.13).
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Figure 3.13  The bandwidth for Example 3.10



Bandwidth (Conti…)

Example 3.11: A periodic signal has a bandwidth of 20
Hz. The highest frequency is 60 Hz. What is the lowest
frequency? Draw the spectrum if the signal contains all
frequencies of the same amplitude.

Solution

Let f be the highest frequency, f the lowest frequency,
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Let fh be the highest frequency, fl the lowest frequency,
and B the bandwidth. Then



Bandwidth (Conti…)

The spectrum contains all integer frequencies. We show
this by a series of spikes (see Figure 3.14).
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Figure 3.14  The bandwidth for Example 3.11



Bandwidth (Conti…)

Example 3.12: A non-periodic composite signal has a
bandwidth of 200 kHz, with a middle frequency of 140
kHz and peak amplitude of 20 V. The two extreme
frequencies have an amplitude of 0. Draw the frequency
domain of the signal.
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Solution

The lowest frequency must be at 40 kHz and the highest
at 240 kHz. Figure 3.15 shows the frequency domain
and the bandwidth.



Bandwidth (Conti…)
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Figure 3.15  The bandwidth for Example 3.12



Bandwidth (Conti…)

Example 3.13: An example of a non-periodic composite
signal is the signal propagated by an AM radio station.
In the United States, each AM radio station is assigned a
10-kHz bandwidth. The total bandwidth dedicated to
AM radio ranges from 530 to 1700 kHz.

Example 3.14: Another example of a non-periodic
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Example 3.14: Another example of a non-periodic
composite signal is the signal propagated by an FM
radio station. In the United States, each FM radio station
is assigned a 200-kHz bandwidth. The total bandwidth
dedicated to FM radio ranges from 88 to 108 MHz.



Bandwidth (Conti…)

Example 3.15: Another example of a nonperiodic
composite signal is the signal received by an old-
fashioned analog black-and-white TV. A TV screen is
made up of pixels. If we assume a resolution of 525 ×
700, we have 367,500 pixels per screen. If we scan the
screen 30 times per second, this is 367,500 × 30 =
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screen 30 times per second, this is 367,500 × 30 =
11,025,000 pixels per second. The worst-case scenario
is alternating black and white pixels. We can send 2
pixels per cycle. Therefore, we need 11,025,000 / 2 =
5,512,500 cycles per second, or Hz. The bandwidth
needed is 5.5125 MHz.



Fourier analysis is a tool that changes a 

Note
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Fourier analysis is a tool that changes a 
time domain signal to a frequency 

domain signal and vice versa.



Digital Signals

 In addition to being represented by an analog signal,
information can also be represented by a digital
signal.

 For example, a 1 can be encoded as a positive voltage
and a 0 as zero voltage.
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and a 0 as zero voltage.

 A digital signal can have more than two levels to send
more than 1 bit for each level.

 In general, if a signal has L levels, each level needs
log2L bits.



Digital Signals (Conti…)
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Figure 3.16  Two digital signals: one with two signal levels and the other
with four signal levels



Digital Signals (Conti…)

Example 3.16: A digital signal has eight levels. How
many bits are needed per level? We calculate the
number of bits from the formula discussed.
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Each signal level is represented by 3 bits.



Digital Signals (Conti…)

Example 3.17: A digital signal has nine levels. How
many bits are needed per level? We calculate the
number of bits by using the formula. Each signal level is
represented by 3.17 bits. However, this answer is not
realistic. The number of bits sent per level needs to be
an integer as well as a power of 2. For this example, 4
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an integer as well as a power of 2. For this example, 4
bits can represent one level.



Bit Rate

 Most digital signals are non-periodic, thus frequency
and period are not appropriate characteristics.

 Another term bit-rate (instead of frequency) is used to
describe digital signals.
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 The bit-rate is the number of bits sent in one second.

 It is expressed in bits per second (bps).



Bit Rate (Conti…)

Example 3.18: Assume we need to download text
documents at the rate of 100 pages per sec. What is the
required bit rate of the channel?

Solution

A page is an average of 24 lines with 80 characters in
each line. If we assume that one character requires 8 bits
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each line. If we assume that one character requires 8 bits
(ASCII), the bit rate is:



Bit Rate (Conti…)

Example 3.19: A digitized voice channel, as we will see
in Chapter 4, is made by digitizing a 4-kHz bandwidth
analog voice signal. We need to sample the signal at
twice the highest frequency (two samples per hertz). We
assume that each sample requires 8 bits. What is the
required bit rate?
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required bit rate?

Solution

The bit rate can be calculated as:



Bit Rate (Conti…)

Example 3.20: What is the bit rate for high-definition TV
(HDTV)?

Solution

HDTV uses digital signals to broadcast high quality video
signals. The HDTV screen is normally a ratio of 16 : 9.
There are 1920 by 1080 pixels per screen, and the screen is
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There are 1920 by 1080 pixels per screen, and the screen is
renewed 30 times per second. Twenty-four bits represents
one color pixel.

The TV stations reduce this rate to 20 to 40 Mbps through
compression



Bit Length

 As discussed that wavelength (for an analog signal) is
the distance one cycle occupies on the transmission
medium.

 Bit length is similar to wavelength defined for digital
signals.
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signals.

 Bit length is the distance one bit occupies on the
transmission medium.

Bit Length = Propagation Speed * Bit Duration



Transmission Impairment

 Signals travel through transmission media, which are
not perfect.

 The imperfection causes signal impairment.

 This means that the signal at the beginning of the
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medium is not the same as the signal at the end of the
medium. What is sent is not what is received.

 Three causes of impairment are attenuation,
distortion, and noise.



Transmission Impairment (Conti…)
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Figure 3.25  Causes of impairment



Attenuation

 Means loss of energy -> weaker signal.

 When a signal travels through a medium it loses
energy overcoming the resistance of the medium.

 Wire carrying electrical signals gets warm i.e. some
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of the electrical energy is converted to heat.

 Amplifiers are used to compensate for this loss of
energy by amplifying the signal.



Attenuation (Conti…)

 To show the loss or gain of energy the unit decibel
(dB) is used.

 The decibel measures the relative strengths of two
signals or one signal at two different points.

dB = 10log P /P
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dB = 10log10P2/P1

P1 – Power of input signal

P2 – Power of output signal



Attenuation (Conti…)

 Some engineering books define the decibel in terms
of voltage instead of power.

dB = 20log10V2/V1

V1 – Voltage of input signal

V – Voltage of output signal
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V2 – Voltage of output signal

 Note: The decibel is negative if a signal is attenuated
and positive if a signal is amplified.



Attenuation (Conti…)
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Figure 3.26  Attenuation



Attenuation (Conti…)

Example 3.26: Suppose a signal travels through a
transmission medium and its power is reduced to one-
half. This means that P2 is (1/2)P1. In this case, the
attenuation (loss of power) can be calculated as:
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A loss of 3 dB (–3 dB) is equivalent to losing one-half
the power.



Attenuation (Conti…)

Example 3.27: A signal travels through an amplifier,
and its power is increased 10 times. This means that P2

= 10P1 . In this case, the amplification (gain of power)
can be calculated as:
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Attenuation (Conti…)

Example 3.28: One reason that engineers use the decibel
to measure the changes in the strength of a signal is that
decibel numbers can be added (or subtracted) when we
are measuring several points (cascading) instead of just
two. In Figure 3.27 a signal travels from point 1 to point
4. In this case, the decibel value can be calculated as:
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4. In this case, the decibel value can be calculated as:



Attenuation (Conti…)
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Figure 3.27  Decibels for Example 3.28



Attenuation (Conti…)

Example 3.29: Sometimes the decibel is used to
measure signal power in milliwatts. In this case, it is
referred to as dBm and is calculated as dBm = 10 log10
Pm , where Pm is the power in milliwatts. Calculate the
power of a signal with dBm = −30.
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Solution

We can calculate the power in the signal as:



Attenuation (Conti…)

Example 3.30: The loss in a cable is usually defined in
decibels per kilometer (dB/km). If the signal at the
beginning of a cable with −0.3 dB/km has a power of 2
mW, what is the power of the signal at 5 km?

Solution

The loss in the cable in decibels is 5 × (−0.3) = −1.5 dB.
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The loss in the cable in decibels is 5 × (−0.3) = −1.5 dB.
We can calculate the power as:



Distortion

 Means that the signal changes its form or shape.

 Distortion occurs in composite signals made of
different frequencies.

 Each frequency component has its own propagation
speed traveling through a medium.

3.67

speed traveling through a medium.

 The different components therefore arrive with
different delays at the receiver.

 That means that the signals have different phases at
the receiver than they did at the source.



Distortion (Conti…)
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Figure 3.28  Distortion



Noise

 There are different types of noise:

 Thermal - random motion of electrons in the wire
creates an extra signal.

 Induced – comes from sources such as motors and
appliances, devices act are transmitter antenna and
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appliances, devices act are transmitter antenna and
medium as receiving antenna.

 Crosstalk – effect of one wire on another.

 Impulse - Spikes that result from power lines, lighting,
etc.



Noise (Conti…)
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Figure 3.29  Noise



Signal to Noise Ratio (SNR)

 Used to measure the quality of a system.

 It indicates the strength of the signal power wrt the
noise power in the system

 It is the ratio between two powers and is defined as:
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SNR = Average signal power/Average noise power

 Often described in decibels and defined as:

SNRdB = 10log10SNR



Signal to Noise Ratio (Conti…)

Example 3.31: The power of a signal is 10 mW and the
power of the noise is 1 μW; what are the values of SNR
and SNRdB ?

Solution:
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The values of SNR and SNRdB can be calculated as
follows:



Signal to Noise Ratio (Conti…)

Example 3.32: The values of SNR and SNRdB for a
noiseless channel are:
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We can never achieve this ratio in real life; it is an ideal.



Signal to Noise Ratio (Conti…)
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Figure 3.30  Two cases of SNR: a high SNR and a low SNR



Data Rate Limits

 A very important consideration in data
communications is how fast data can be send, in bits
per second, over a channel.

 Data rate depends on three factors:

 The bandwidth available
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 The bandwidth available

 The level of the signals used

 The quality of the channel (the level of noise)



Capacity of a System

 The bit rate of a system increases with an increase in
the number of signal levels we use to denote a
symbol.

 A symbol can consist of a single bit or n bits.

 The number of signal levels L = 2n.
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 The number of signal levels L = 2n.

 As the number of levels goes up, the spacing between
level decreases -> increasing the probability of an
error occurring in the presence of transmission
impairments.



Nyquist Theorem : Noiseless Channel

 For noiseless channel, the Nyquist bit rate formula
defines the theoretical maximum bit rate:

C = 2 B log2L 
C= capacity in bps

B = bandwidth in Hz
L = Levels of signals
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L = Levels of signals

 2 levels of signal can easily understandable at
receiver

 Sophisticated receivers are required for 64 levels

 Note: Increasing the levels of signal may reduce the
reliability of the system.



Nyquist Theorem (Conti…)

Example 3.34: Consider a noiseless channel with a
bandwidth of 3000 Hz transmitting a signal with two
signal levels. The maximum bit rate can be calculated
as:
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Nyquist Theorem (Conti…)

Example 3.35: Consider the same noiseless channel
transmitting a signal with four signal levels (for each
level, we send 2 bits). The maximum bit rate can be
calculated as:
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Nyquist Theorem (Conti…)

Example 3.36: We need to send 265 kbps over a
noiseless channel with a bandwidth of 20 kHz. How
many signal levels do we need?
Solution:
We can use the Nyquist formula as shown :
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Since this result is not a power of 2, we need to either
increase the number of levels or reduce the bit rate. If
we have 128 levels, the bit rate is 280 kbps. If we have
64 levels, the bit rate is 240 kbps.



Shannon Capacity – Noisy Channel

 In reality, the channel is always noisy.

 Shannon capacity (formula) was introduced in 1944
to determine the theoretical highest data rate for noisy
channel:

C = 2 B log (1 + SNR) 
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C = 2 B log2(1 + SNR) 

C= capacity in bps

B = bandwidth in Hz

SNR = Signal to Noise Ration



Shannon Capacity (Conti…)

Example 3.37: Consider an extremely noisy channel in
which the value of the signal-to-noise ratio is almost
zero. In other words, the noise is so strong that the
signal is faint. For this channel the capacity C is
calculated as:
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This means that the capacity of this channel is zero
regardless of the bandwidth. In other words, we cannot
receive any data through this channel.



Shannon Capacity (Conti…)

Example 3.39: The signal-to-noise ratio is often given in
decibels. Assume that SNRdB = 36 and the channel
bandwidth is 2 MHz. The theoretical channel capacity
can be calculated as:
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Shannon Capacity (Conti…)

Example 3.40: For practical purposes, when the SNR is
very high, we can assume that SNR + 1 is almost the
same as SNR. In these cases, the theoretical channel
capacity can be simplified to:
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For example, we can calculate the theoretical capacity
of the previous example as:



Shannon Capacity (Conti…)

Example 3.41: We have a channel with a 1-MHz
bandwidth. The SNR for this channel is 63. What are
the appropriate bit rate and signal level?

Solution:

First, we use the Shannon formula to find the upper
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First, we use the Shannon formula to find the upper
limit.



Shannon Capacity (Conti…)

Example 3.41 (Conti…):

The Shannon formula gives us 6 Mbps, the upper limit.
For better performance we choose something lower, 4
Mbps, for example. Then we use the Nyquist formula to
find the number of signal levels.
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find the number of signal levels.



The Shannon capacity gives us the 
upper limit; the Nyquist formula tells us 

Note
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upper limit; the Nyquist formula tells us 
how many signal levels we need.



Performance

 One important issue in networking is the performance
of the network—how good is it?

 The following terms are used to measure the
performance of the network:

 Bandwidth - capacity of the system
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 Bandwidth - capacity of the system

 Throughput - number of bits that can be pushed
through

 Latency (Delay) - delay incurred by a bit from start to
finish

 Bandwidth-Delay Product



Bandwidth

 In networking the term bandwidth is used in two
context:

 The first, bandwidth in Hertz, refers to the range of
frequencies in a composite signal or the range of
frequencies that a channel can pass.
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 The second, bandwidth in bits per second, refers to the
speed of bits transmission on a channel or link.

 An increase in bandwidth in Hertz means an increase
in bandwidth in bits per second.



Bandwidth (Conti…)

 Example 3.42: The bandwidth of a subscriber line is 4
kHz for voice or data. The bandwidth of this line for
data transmission can be up to 56,000 bps using a
sophisticated modem to change the digital signal to
analog.

 Example 3.43: If the telephone company improves
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 Example 3.43: If the telephone company improves
the quality of the line and increases the bandwidth to
8 kHz, we can send 112,000 bps by using the same
technology as mentioned in Example 3.42.



Throughput

 Throughput is the actual speed of data movement
over the network.

 Seems same as bandwidth in bps but different.

 Bandwidth in bps is the potential measurement but
throughput is the actual measurement.
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throughput is the actual measurement.

 A link may have a bandwidth of B bps and T bps
throughput with T always less than B.

 A link may have bandwidth of 1Mbps but the devices
connects may handle only 200Kbps.



Throughput (Conti…)

Example 3.44: A network with bandwidth of 10 Mbps
can pass only an average of 12,000 frames per minute
with each frame carrying an average of 10,000 bits.
What is the throughput of this network?

Solution:

We can calculate the throughput as:
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We can calculate the throughput as:

The throughput is almost one-fifth of the bandwidth in
this case.



Latency (Delay)

 Latency (delay) defines how long it takes for entire
message to completely arrive at the destination from
the time the first bit is sent out from the source.

 Latency is made of four components:
 Propagation time

3.93

 Transmission time

 Queuing time

 Processing time
Latency = Propagation delay + Transmission delay + Queuing
time + Processing time



Propagation Time

 Propagation time measures the time required for a bit
to travel from source to the destination.

 It is calculated by dividing the distance by the
propagation speed, i.e.

3.94

Propagation time = Distance / Propagation speed



Propagation Time (Conti…)

Example 3.45: What is the propagation time if the
distance between the two points is 12,000 km? Assume
the propagation speed to be 2.4 × 108 m/s in cable.

Solution:

We can calculate the propagation time as:

3.95

The example shows that a bit can go over the Atlantic
Ocean in only 50 ms if there is a direct cable between
the source and the destination.



Transmission Time

 Transmission time is the time between the first bit
leaving the sender and the last bit arriving at the
receiver.

 The time required for transmission of a message
depends on the size of the message and the bandwidth
of the channel.
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of the channel.

Transmission time = Message Size / Bandwidth



Propagation Time (Conti…)

Example 3.46: What are the propagation time and the
transmission time for a 2.5-kbyte message (an e-mail) if
the bandwidth of the network is 1 Gbps? Assume that
the distance between the sender and the receiver is
12,000 km and that light travels at 2.4 × 108 m/s.

3.97

Solution

We can calculate the propagation and transmission time
as shown on the next slide:



Propagation Time (Conti…)

Example 3.46 (Conti…):

3.98

Note that in this case, because the message is short and
the bandwidth is high, the dominant factor is the
propagation time, not the transmission time. The
transmission time can be ignored.



Propagation Time (Conti…)

Example 3.47: What are the propagation time and the
transmission time for a 5-Mbyte message (an image) if
the bandwidth of the network is 1 Mbps? Assume that
the distance between the sender and the receiver is
12,000 km and that light travels at 2.4 × 108 m/s.

3.99

Solution

We can calculate the propagation and transmission
times as shown on the next slide.



Propagation Time (Conti…)

Example 3.47 (Conti…):

3.100

Note that in this case, because the message is very long
and the bandwidth is not very high, the dominant factor
is the transmission time, not the propagation time. The
propagation time can be ignored.



Bandwidth-Delay Product

 Bandwidth and Delay are two performance metrics of
a channel/link.

 However, the product of the two, the bandwidth-
delay product, is also very important.

 The bandwidth-delay product defines the number of

3.101

 The bandwidth-delay product defines the number of
bits that can fill the link.

 To elaborate the bandwidth-delay product, consider
the two hypothetical cases as examples.



Bandwidth-Delay Product (Conti…)
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Figure 3.31  Filling the link with bits for case 1



Bandwidth-Delay Product (Conti…)
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Figure 3.32  Filling the link with bits in case 2



Bandwidth-Delay Product (Conti…)

3.104

Figure 3.33  Concept of bandwidth-delay product


