Recap Lecture 12

Examples of writing REs to the corresponding TGs, RE corresponding to TG accepting EVEN-EVEN language, Kleene's theorem part III (method 1:union of FAs), examples of FAs corresponding to simple REs, example of Kleene's theorem part III (method 1) continued

Note

 It may be noted that in the previous example FA₁ contains two states while FA₂ contains three states. Hence the total number of possible combinations of states of FA₁ and FA_2 , in sequence, will be six. For each combination the transitions for both a and b can be determined, but using the method in the example, number of states of FA_3 was reduced to five.

Build an FA equivalent to the previous FA

Example

Example

Let $r_1 = ((a+b)(a+b))^*$ and the corresponding FA_1 be

also $r_2 = (a+b)((a+b)(a+b))^*$ or ((a+b)(a+b))*(a+b) and FA₂ be

Old StatesNew States after readingab $z_1 \pm \cong (x_1, y_1)$ $(x_2, y_2) \cong z_2$ $(x_2, y_2) \cong z_2$

Old States	New States after reading	
	а	b
$z_2 + \cong (x_2, y_2)$	$(\mathbf{x}_1, \mathbf{y}_1) \cong \mathbf{z}_1$	$(\mathbf{x}_1, \mathbf{y}_1) \cong \mathbf{z}_1$

Т

Task

Build an FA corresponding to the union of these two FAs *i.e.* $FA_1 \cup FA_2$ where a,b

Kleene's Theorem Part III Continued ...

<u> Method2 (Concatenation of two</u> <u> FAs)</u>:

Using the FAs corresponding to r_1 and r_2 , an FA can be built, corresponding to r_1r_2 . This method can be developed considering the following examples

Example

14

Concatenation of two FAs Continued ...

Let FA_3 be an FA corresponding to r_1r_2 , then the initial state of FA₃ must correspond to the initial state of FA₁ and the final state of FA₃ must correspond to the final state of FA₂. Since the language corresponding to r_1r_2 is the concatenation of corresponding languages L₁ and L_2 , consists of the strings obtained, concatenating the strings of L_1 to those of L_2 , therefore the moment a final state of first FA is entered, the possibility of the initial state of second FA will be included as well.

Concatenation of two FAs Continued ...

Since, in general, FA_3 will be different from both FA_1 and FA_2 , so the labels of the states of FA_3 may be supposed to be $z_1, z_2, z_3, ...,$ where z_1 stands for the initial state. Since z₁ corresponds to the states x_1 , so there will be two transitions separately for each letter read at z₁. It will give two possibilities of states which correspond to either z_1 or different from z_1 . This process may be expressed in the following transition table for all possible states of FA₃

17

19

Summing Up

- Examples of Kleene's theorem part III (method 1) continued ,Kleene's theorem part III (method 2: Concatenation of FAs),
- Example of Kleene's theorem part III
 (method 2 : Concatenation of FAs)