Week # 01

→ Introduction to System of Linear Equation

Linear Equation:-

An equation of the type ax = b expressing the variable 'b' in terms of the variable 'x' and the constant 'a' is called a linear equation .In linear equation $a \neq 0$.

A linear equation in one unknown is an equation of the form ax = b, where 'a' and 'b' are constants and 'x' is an unknown that we wish to solve for.

OR

Examples:-

1. 3x = 2

It is linear equation because it is in the form of ax = bhere a = 3, b = 2 2. 5x = 10It is linear equation because it is in the form of ax = bhere a = 5, b = 10 3. -2x = -70It is linear equation because it is in the form of ax = bhere a = -2, b = -70

Linear Equation of One Variable:-

A linear equation in one variable is an equation that can be written in the form of ax = b .where 'a' and 'b' are real numbers, $a \neq 0$. The answer of the linear equation of variable will be one.

• Examples:-

2x + 7 = 19
Sol: -

Subtract 7 from both sides

2x +1 -1 = 19-7

$$2x = 12$$

Divide both sides by 2

x = 6. Ans

Linear Equation of two Variables:-

If a, b and r are real numbers and $(a \neq 0, b \neq 0)$ then ax + by = r is called a linear equation in two variables. The two variables are'x' and 'y'. The numbers a and b are called the coefficients of the equation ax + by = r. The number r is called constant of the equation ax + by = r. Linear equation of two variables can also be written in the form of $a_1x_1 + a_2x_2 = b$.

• Examples:-

10x - 3y = 5 And -2x - 4y = 7 are linear equations in two variables.

Linear Equation of three Variables:-

The equation ax + by + cz = k are linear equation in three variables .In order to solve equations in three variables, are known as three-by-three systems. The equation of linear in three variables can also be written in the form of $a_1x_1 + a_2x_2 + a_3x_3 = b$.

Similarly the equation

 $a_1x_1 + a_2x_2 + a_3x_3 - a_nx_n = b$. Expressing 'b' in terms of the variables $x_1, x_2, x_3 - a_n$ and the known constants $a_1, a_2, a_3 - a_n$ is called linear equation.

Examples:-

Solution of nthequation

2x + 5y = 10 $x = 5, \quad y = 0$ $x = 0, \quad y = 2$ $x = 10, \quad y = -2$

 $x_1 + x_2 + x_3 + x_4 = 10$ 1 + 2 + 3 + 4 2 + 1 + 3 + 4 3 + 1 + 2 + 4 10 + 0 + 0 + 05 + 5 + 0 + 0

These all are many Infinite solutions.

Systems of linear equations:-

 $a_{11}x_{1+}a_{12}x_{2} + a_{13}x_{3} - a_{1n}x_{n} = b_{1}$ $a_{21}x_{1+}a_{22}x_{2} + a_{23}x_{3} - a_{2n}x_{n} = b_{2}$ $a_{31}x_{1+}a_{32}x_{2} + a_{33}x_{3} - a_{3n}x_{n} = b_{3}$ \vdots $a_{n1}x_{1+}a_{n2}x_{2} + a_{n3}x_{3} - a_{nn}x_{n} = b_{n}$

• Questions:-

Solve the system of linear equation by using method of elimination.

1.
$$x + 2y = 8$$

 $3x - 4y = 4$
 $sol: -$
 $x + 2y = 8$
 $3x - 4y = 4$
(i)
 $3x - 4y = 4$
(i)
Multiplying (i) by 3
 $3x + 6y = 24$
 $\pm 3x \pm 6y = 24$
 $\frac{\pm 3x \pm 4y = \pm 4}{0 + 10y = 20}$
 $10y = 20$
 $y = \frac{20}{10}$
(i)
 $x + 2y = 8$
(i)
 $x_1 - 2x_2 = -1$
 $\frac{x_1 - 2x_2 = -1}{2x_2 = -1}$
 $\frac{x_2 = 2}{2x_2 = 2}$
Put $x_2 = 2$ in \longrightarrow (i) or (ii)

y = 2

- Put y = 2 in \longrightarrow (i) or (ii) x + 2y = 8 x + 2(2) = 8 x + 4 = 8 x = 8 - 4 $\boxed{x = 4}$ solution set = {4, 2}
- 3. 2x 3y + 4z = -12 x - 2y + z = -5 3x + y + 2z = 1*Sol:* -

 $2x - 3y + 4z = -12 \longrightarrow (i)$ $x - 2y + z = -5 \longrightarrow (ii)$ $3x + y + 2z = 1 \longrightarrow (iii)$

Multiplying \longrightarrow (ii) by 2 $2x - 4y + 2z = -10 \longrightarrow$ (iv)

Multiplying \longrightarrow (ii) by 3 3x - 6y + 3z = -15

Subtract \longrightarrow (i) from \longrightarrow (iv)

2x - 4y + 2z = -10 $\pm 2x \mp 3y \pm 4z = \mp 12$ 0 - y - 2z = 2

-y - 2z = 2y + 2z = -2 \rightarrow (vi)

Subtract \rightarrow (iii) from \rightarrow (v) 3x - 6y + 3z = -15

 $\frac{\pm 3x \pm y \pm 2z = \pm 1}{0 - 7y + z = -16}$

$$x_{1}-2x_{2} = -1$$

$$x_{1} - 2(2) = -1$$

$$x_{1} - 4 = -1$$

$$x_{1} = -1 + 4$$

$$x_{1} = 3$$

$$\boxed{x_{1} = 3}$$

$$S.S = \{3, 2\}$$
4. $3x + 2y + z = 2$

$$4x + 2y + 2z = 8$$

$$x - y + z = 4$$

$$Sol: -$$

$$3x + 2y + z = 2 \longrightarrow (i)$$

$$4x + 2y + 2z = 8 \longrightarrow (ii)$$

$$x - y + z = 4 \longrightarrow (iii)$$
Multiplying $\longrightarrow (iii)$ by 4

$$4x - 4y + 4z = 16 \longrightarrow (iv)$$
Multiplying $\longrightarrow (iii)$ by 3

$$3x - 3y + 3z = 12 \longrightarrow (v)$$
Subtract (iii) from (iii)

$$4x' - 4y + 4z = 16$$

$$\frac{\pm 4x' \pm 2y \pm 2z = \pm 8}{0 - 6y + 2z = 8}$$

$$-6y + 2z = 8 \longrightarrow (vi)$$
Subtract (i) from (v)

$$\frac{3x' - 3y + 3z = 12}{-6y + 2z = 10}$$

$$-7y + z = -16 \longrightarrow (vii)$$

$$y + 2z = -2 \longrightarrow (vi)$$

$$y + 2z = -2 \longrightarrow (vi)$$

$$y + 14z = -14 \longrightarrow (viii)$$

$$Add \longrightarrow (vii) \& \longrightarrow (viii)$$

$$\frac{7y' + 14z = -14}{\frac{27y' + 1z = -16}{0 + 15z = -30}}$$

$$15z = -30$$

$$z = \frac{230'^{2}}{y5'}$$

$$\overline{z = -2}$$

$$Put z = -2 \text{ in } \longrightarrow (vi)$$

$$y + 2z = -2$$

$$y + 2(-2) = -2$$

$$z = 20^{(n)}$$

$$z = 20^{(n)}$$

$$y + 2(-2) = -2$$

$$z = 20^{(n)}$$

$$z = 20^{(n)}$$

$$z = 2(-1)$$

$$3x + 2y + z = 2$$

$$3x + 2(2) + 10 = 2$$

$$3x + 2(-1) = 2$$

$$3x + 4 + 10 = 2$$

$$3x = -14$$

$$3x = -12$$

$$x = \frac{-12'}{x'}$$

$$(x = -4]$$

$$S.S = (-4, 2, 10)$$
The End of Weak #02