Yasir Ahmad
Visiting Faculty Member
From
ICS & IT Department
The University Of Agriculture Peshawar

cslearnerr.com

cslearnerr.com

Object Oriented Key Principles

1. Data Abstraction and Encapsulation
2. Inheritance
3. Polymorphism

Discover comprehensive notes for BSCS, BSIT
and BSAI courses conveniently gathered on our
user-friendly website, www.cslearnerr.com

Discover comprehensive notes for BSCS, BSIT and BSAI courses conveniently gathered on our user-friendly website, www.cslearnerr.com

Object Oriented Key Principles

2- Inheritance

cslearnerr.com

Object Oriented Key Principles

2- Inheritance

Reference

Cast "up" the A Shape
inheritance .
diagram |)
d i erase()
-------------- E)
cslearnerr.com
Circle Square Triangle

draw() draw() draw()
erase() erase() erase()

cslearnerr.com

Inheritance

A class can extend another class,
inheriting all its data members and
methods while redefining some of
them and/or adding its own.

Inheritance represents the is a
relationship between data types. For
example: a Circleis a Shape.

cslearnerr.com

cslearnerr.com

Inheritance in Java

subclass extends superclass

public class Circle extends TwoDShape

{

} cslearnerr.com

6

TwoDimShape

JAN

Circle

cslearnerr.com

Inheritance in Java
e Java supports inheritance
— A “subclass” inherits from a “superclass”

 |Inthe sub class:

— In class header use the extends keyword to
specify the superclass

— Only declare the additional fields and methods

— In subclass constructor call the superclass
constructor via super keyword

— (optionally) override superclass methods

cslearnerr.com

cslearnerr.com

Inheritance Example

public class Square {
protected 1nt length;
public Square (int len) {length = len;}
public int perimeter () {return 4 * length;}
public 1nt area() {return length * length;}

public class Rectangle extends Square{

private int width;

public Rectangle(int len, int wid) {
super (len) ;
width = wid;

}

public int perimeter ()
{return 2 * (length + width);}

public 1nt area() {return length * width;}

Visibility
* public
— Any field or method specified as public can be used

by any external class

— Class constructors, accessors and service methods
should be specified as public

* private

— Any field or method specified as private can be
used by code inside the class

— Fields and internal helper methods should be
private

* protected

— Any field or method specified as protected can be

used by code inside the class and in subclasses
* i.e. classes which inherit from the original class

Multiple Inheritance

« Multiple inheritance allows a class to be
derived from two or more classes, inheriting
the members of all parents
— Collisions, such as the same variable name in two

parents, have to be resolved

e Java supports single inheritance, meaning
that a derived class can have only one parent
class

« Java does not support multiple inheritance via
two or more classes

— However, multiple interfaces inheritance is
allowed (interfaces in next class)

10
0

Inheritance Hierarchy Example

Shape

JAN

TwoDimShape
N\

ThreeDimShape

JAN

Square Circle

Cube

nere

Inheritance Hierarchy Example

Generalization / Specialization

Vehicle Generalize what is

Vehicle common between Car and
v-no Motorbike

Model

Color

Drive
Stop
4
8
|
.]
S Motorbike Car g
v-no v-Nno =
Model Model
color Color
Drive Airbag
Stop Drive
Stop
Reverse

Car and Motorbike specialize Vehicle to their
own sub-type.

12

Inheritance Relationships

 |nheritance creates an is-a relationship,
— |.e. the child is a specialised version of the parent

» Achild class of one parent can be the parent of
another child, forming a class hierarchy.

» A subclass will inherit all attributes and operations
defined in any of its super classes

— Subclass may be augmented(to make greater) with
additional attributes and operations

— Subclass can override attributes and operations

Inheritance

Hierarchy Example

BankAccount

CurrentAccount

SavingsAccount

A

StudentAccount PremierAccount

HighInterestSavingsAccount

Banking Inheritance Example

BankAccount

|

CurrentAccount

superclass

subclass

 Subclass inherits the variables and methods
defined by the super class

public class CurrentAccount extends BankAccount {

« Subclass specializes by adding its own

members:
— fields: overdraftLimit
— methods: getOverdraftLimit ()

setOverdraftLimit ()
debit () - overridden

Overriding methods

A subclass can override the definition of an inherited

method in favour of its own
— Unless the original method is defined as £inal in the super class

« The new overridden version of the method must have the

same signhature as the parent's method
— But can have a different body

* The type of the object executing the method determines

which version of the method is invoked

— The original method in the super class can be invoked explicitly
using the super reference

16

Overloading vs. Overriding

* Overloading

— Multiple methods with the same name in the same
class, but with different signatures (parameters)

— Allows similar operation to be defined in different
ways for different parameters

* Overriding

— Two methods with same name and the same
sighature
 Original version in a parent class
 Recoded version in a child class

— Allows a similar operation to be defined in different
ways for different sub classes

17

Superclass — BankAccount (1)

public class BankAccount {

//fields

private String number;
private String name;
private double balance;

//default constructor

public BankAccount () {
number = "-——————- ;
name = "—-—-—-———-—-— ;
balance = 0.0;

}

//overloaded constructor

public BankAccount (String accountNo, String accountName) {
number = accountNo;
name = accountName;
balance = 0.0;

Superclass — BankAccount (2)

public String getAccountNo () {return number;}
public String getAccountName () {return name;}
public double getBalance() {return balance;}

public void setAccountName (String accountName)
{name=accountName; }

public void credit (double amount)
{balance = balance + amount;}

public void debit (double amount)
{balance = balance - amount;}

Adding constructors in a subclass

Super class constructors are not inherited by the
sub class, even though they have public visibility

— However we need to use the super class constructor in
order to set up the "parent's part” of the object

The super reference is a reference to the super
class of a sub class
— Whereas this Is a reference to the class itself

Super IS used to invoke the parent's constructor

super (accountNo, accountName) ;

The sub class constructor specifies parameters to:
— Initialise fields from its super class
— And to initialise its own fields

Subclass Constructors

//default constructor
public CurrentAccount (String accountNo,

String accountName) {

//invoke the parent's constructor

super (accountNo, accountName) ;

//initialise field

overdraftLimit = 0.0;

//overloaded constructor
public CurrentAccount (String accountNo,
String accountName, double accountLimit) {

super (accountNo, accountName) ;

overdraftlLimit = accountLimit;

21

Inheritance Design Issues (1)

 All derivations should be is a relationships
—I.e. a sub class is a child of super class

* Override methods as appropriate to tailor
or change the functionality of a child

— Even If there are no current uses for them,
override general methods

 Add new variables to children, but don't
redefine (i.e. do not shadow) inherited
variables

— Use visibility modifiers carefully to provide
needed access without violating encapsulation

Inheritance Design Issues (2)

* Allow each class to manage its own data

— Use the super reference to invoke the parent's
constructor to set up Its data

» Use the final modifier to prevent
Inheritance

— If the final modifier is applied to a method, then
that method cannot be overridden in any
descendant classes

— If the final modifier is applied to an entire class,
then that class cannot be used to derive any
children at all

— Final should be your default choice!

23

Summary

A subclass inherits methods and fields from
superclass by using the keyword “extends”

Multiple Inheritance from classes is not
supported in Java

Classes form a hierarchy in any application
A subclass does not inherit constructors

A subclass can redefine a method specifically
for its own needs

24

Further Reading

* Chapter 9 of Java: How to Program 8e by
Dietel & Dietel

Discover comprehensive notes for BSCS, BSIT
and BSAI courses conveniently gathered on our
user-friendly website, www.cslearnerr.com

Discover comprehensive notes for BSCS, BSIT and BSAI courses conveniently gathered on our user-friendly website, www.cslearnerr.com

