Yasir Ahmad
Visiting Faculty Member
From
ICS & IT Department
The University Of Agriculture Peshawar

cslearnerr.com


cslearnerr.com


Object Oriented Key Principles

1. Data Abstraction and Encapsulation
2. Inheritance
3. Polymorphism
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Inheritance

A class can extend another class,
inheriting all its data members and
methods while redefining some of
them and/or adding its own.

Inheritance represents the is a
relationship between data types. For
example: a Circleis a Shape.
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Inheritance in Java

subclass extends  superclass

public class Circle extends TwoDShape

{

} cslearnerr.com
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Inheritance in Java
e Java supports inheritance
— A “subclass” inherits from a “superclass”

 |Inthe sub class:

— In class header use the extends keyword to
specify the superclass

— Only declare the additional fields and methods

— In subclass constructor call the superclass
constructor via super keyword

— (optionally) override superclass methods
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Inheritance Example

public class Square {
protected 1nt length;
public Square (int len) {length = len;}
public int perimeter () {return 4 * length;}
public 1nt area() {return length * length;}

public class Rectangle extends Square{

private int width;

public Rectangle(int len, int wid) {
super (len) ;
width = wid;

}

public int perimeter ()
{return 2 * (length + width);}

public 1nt area() {return length * width;}



Visibility
* public
— Any field or method specified as public can be used

by any external class

— Class constructors, accessors and service methods
should be specified as public

* private

— Any field or method specified as private can be
used by code inside the class

— Fields and internal helper methods should be
private

* protected

— Any field or method specified as protected can be

used by code inside the class and in subclasses
* i.e. classes which inherit from the original class



Multiple Inheritance

« Multiple inheritance allows a class to be
derived from two or more classes, inheriting
the members of all parents
— Collisions, such as the same variable name in two

parents, have to be resolved

e Java supports single inheritance, meaning
that a derived class can have only one parent
class

« Java does not support multiple inheritance via
two or more classes

— However, multiple interfaces inheritance is
allowed (interfaces in next class)
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Inheritance Hierarchy Example
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Inheritance Hierarchy Example

Generalization / Specialization

Vehicle Generalize what is

Vehicle common between Car and
v-no Motorbike

Model
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Stop
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Car and Motorbike specialize Vehicle to their
own sub-type.
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Inheritance Relationships

 |nheritance creates an is-a relationship,
— |.e. the child is a specialised version of the parent

» Achild class of one parent can be the parent of
another child, forming a class hierarchy.

» A subclass will inherit all attributes and operations
defined in any of its super classes

— Subclass may be augmented(to make greater) with
additional attributes and operations

— Subclass can override attributes and operations
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Banking Inheritance Example

BankAccount

|

CurrentAccount

superclass

subclass

 Subclass inherits the variables and methods
defined by the super class

public class CurrentAccount extends BankAccount {

« Subclass specializes by adding its own

members:
— fields: overdraftLimit
— methods: getOverdraftLimit ()

setOverdraftLimit ()
debit () - overridden



Overriding methods

A subclass can override the definition of an inherited

method in favour of its own
— Unless the original method is defined as £inal in the super class

« The new overridden version of the method must have the

same signhature as the parent's method
— But can have a different body

* The type of the object executing the method determines

which version of the method is invoked

— The original method in the super class can be invoked explicitly
using the super reference

16



Overloading vs. Overriding

* Overloading

— Multiple methods with the same name in the same
class, but with different signatures (parameters)

— Allows similar operation to be defined in different
ways for different parameters

* Overriding

— Two methods with same name and the same
sighature
 Original version in a parent class
 Recoded version in a child class

— Allows a similar operation to be defined in different
ways for different sub classes
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Superclass — BankAccount (1)

public class BankAccount {

//fields

private String number;
private String name;
private double balance;

//default constructor

public BankAccount () {
number = "-——————- ;
name = "—-—-—-———-—-— ;
balance = 0.0;

}

//overloaded constructor

public BankAccount (String accountNo, String accountName) {
number = accountNo;
name = accountName;
balance = 0.0;



Superclass — BankAccount (2)

public String getAccountNo () {return number;}
public String getAccountName () {return name;}
public double getBalance() {return balance;}

public void setAccountName (String accountName)
{name=accountName; }

public void credit (double amount)
{balance = balance + amount;}

public void debit (double amount)
{balance = balance - amount;}



Adding constructors in a subclass

Super class constructors are not inherited by the
sub class, even though they have public visibility

— However we need to use the super class constructor in
order to set up the "parent's part” of the object

The super reference is a reference to the super
class of a sub class
— Whereas this Is a reference to the class itself

Super IS used to invoke the parent's constructor

super (accountNo, accountName) ;

The sub class constructor specifies parameters to:
— Initialise fields from its super class
— And to initialise its own fields



Subclass Constructors

//default constructor
public CurrentAccount (String accountNo,

String accountName) {

//invoke the parent's constructor

super (accountNo, accountName) ;

//initialise field

overdraftLimit = 0.0;

//overloaded constructor
public CurrentAccount (String accountNo,
String accountName, double accountLimit) {

super (accountNo, accountName) ;

overdraftlLimit = accountLimit;
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Inheritance Design Issues (1)

 All derivations should be is a relationships
—I.e. a sub class is a child of super class

* Override methods as appropriate to tailor
or change the functionality of a child

— Even If there are no current uses for them,
override general methods

 Add new variables to children, but don't
redefine (i.e. do not shadow) inherited
variables

— Use visibility modifiers carefully to provide
needed access without violating encapsulation



Inheritance Design Issues (2)

* Allow each class to manage its own data

— Use the super reference to invoke the parent's
constructor to set up Its data

» Use the final modifier to prevent
Inheritance

— If the final modifier is applied to a method, then
that method cannot be overridden in any
descendant classes

— If the final modifier is applied to an entire class,
then that class cannot be used to derive any
children at all

— Final should be your default choice!
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Summary

A subclass inherits methods and fields from
superclass by using the keyword “extends”

Multiple Inheritance from classes is not
supported in Java

Classes form a hierarchy in any application
A subclass does not inherit constructors

A subclass can redefine a method specifically
for its own needs
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Further Reading

* Chapter 9 of Java: How to Program 8e by
Dietel & Dietel
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