
Yasir Ahmad
Visiting Faculty Member

From
ICS & IT Department

The University Of Agriculture Peshawar

1

cslearnerr.com

Programming Languages II --
Java

Object Oriented Programming in Java-II

2

Programming Languages II -- Java
Object Oriented Programming in Java-II

3

cslearnerr.com

Object Oriented Concepts

4

cslearnerr.com

Object Oriented Concepts

• Data Abstraction and Encapsulation

• Inheritance

• Polymorphism

5

cslearnerr.com

Today’s Lecture

• Data Abstraction and Encapsulation

6

Discover comprehensive notes for BSCS, BSIT and BSAI courses conveniently gathered on our user-friendly website, www.cslearnerr.com

Today’s Lecture

• Data Abstraction and Encapsulation

7

Data Abstraction((خیال

• Consider a real-life example of a man driving a car. The man only
knows that pressing the accelerators will increase the speed of car
or applying brakes will stop the car, but he does not know about
how on pressing the accelerator the speed is actually increasing,
he does not know about the inner mechanism of the car or the
implementation of the accelerator, brakes etc in the car. This is
what abstraction is.

8

Encapsulation (1/2)

• Realtime Example :
Suppose you have an account in the bank. If your balance variable is
declared as a public variable in the bank software, your account balance will
be known as public, In this case, anyone can know your account balance. So,
would you like it? Obviously No.

• So, they declare balance variable as private for making your account safe, so
that anyone cannot see your account balance.

• The person who has to see his account balance, will have to access only
private members through methods defined inside that class and this method
will ask your account holder name or user Id, and password for
authentication.

• Thus, we can achieve security by utilizing the concept of data hiding. This is
called Encapsulation in Java.

9

Encapsulation (2/2) Public ,private, protected

• Private: The access level of a private modifier is only within the class. It cannot
be accessed from outside the class.

• Default: The access level of a default modifier is only within the package. It
cannot be accessed from outside the package. If you do not specify any access
level, it will be the default.

• Protected: The access level of a protected modifier is within the package and
outside the package through child class. If you do not make the child class, it
cannot be accessed from outside the package.

• Public: The access level of a public modifier is everywhere. It can be accessed
from within the class, outside the class, within the package and outside the
package. 10

1
1

Real World Objects
• We all interact with real world objects (i.e. things)

– A chair

– A sweet

– A pen

• All objects can be described by:

(combination of which define the object– Attributes
state)

– Behaviours (actions performed using attributes)

• Simple attributes are measurable quantities
– E.g. height, length, weight, calories, ink-level, etc

• Some behaviours are easy to describe
– Adjust Height – increases / decrease chair height
– Write – decreases ink in pen

11

cslearnerr.com

1
2

Real World Objects

12

1
3

Classes of Real Objects

• When two objects can be described by the exact
same set of attributes(filelds) and
behaviours(functions)
– Then the objects belong to same the class

– Not necessarily the same attribute values!

• If two objects can be described by a similar set of
attributes and actions
– Then the objects could be related

• If two objects are of the same class and have the
same value for their attributes
– Then at that point in time they are identical

13

Java Class

• We design computer programs to solve problems in
the real world
– The real world is composed of objects

– Thus we can use software “objects” in programs

• In Java, we can define a Class, which specifies
– Attributes as a set of fields (variables, constants, etc.)
– Behaviours as methods

• All classes are unique, but can be related
– Thus encouraging re-use of code

• To put the class into action

– We declare instances of the class called objects
14

cslearnerr.com

Circle.java

15

public class Circle {

private int radius;

public Circle(int rad){radius = rad;}//constructor

public int diameter(){return 2 * radius;}

public double area(){

return radius * radius * Math.PI;

}

public double circumference(){

return 2 * radius * Math.PI;

}

}

Fields

16

• Only one field is specified:
private int radius;

• Data Encapsulation:
– The field is declared privatemeaning only code inside

the class can directly access it

• Data Abstraction:
– Other potential state attributes (diameter, area and

circumference) can be calculated from the radius

– Thus fields are not defined for these potential attributes

– Instead we define methods to calculate them

Constructor

17

• Purpose is to initialise some/all the fields of a
class when initializing an object
– Always has same name as class
– A class can have zero, one or more constructors
– If no constructor is defined then JVM generates a

default constructor which initialises all fields to default
values

• Circle Constructor is:
public Circle(int rad){radius = rad;}

– The constructor will be used by outside code, so is
declared public

– This constructor accepts one parameter and initialises
the field to that parameter

Methods

18

• The purpose of methods within a class is to simulate behaviour of
real world equivalent
– Calculate derivable attributes

• Method Types:
– Constructors: Used to initialize the fields of a class when creating an

instance of the class (discussed on previous slide)
– Accessors: Read the value of a field
– Mutators: Change the value of a field

• Many methods will be marked as public
– Some may be also specified to be static, meaning they can be used

without an instance

• In the circle class we have three methods, all of which calculate a
derived attribute:
– + diameter(): int

– + circumference(): double

– + area(): double

Main Class

19

public class CircleDemo {

public static void main(String[] args) {

Circle circle = new Circle(10);

System.out.format("%nCircle object

created with radius of 5");

System.out.format("%nDiameter is %d",

circle.diameter());

System.out.format("%nCircumference is

%.2f", circle.circumference());

System.out.format("%nArea is %.2f",

circle.area());

}

}

cslearnerr.com

Object Instance

20

• The class, by itself, is a template(ے (سانچ

• Will remain dormant(ےفعال (غیر unless we create an instance

• Syntax:
– ClassName identifier = new ClassName(args)

• Example
– Circle circle = new Circle(10);

• The left hand side is declaring the object variable
–The right hand side is instantiating

the object by using the class
constructor

Reference and Instantiation (1)

21

• When an object instance is declared,
Circle circle3;

– A reference variable is declared

– The reference has nowhere to point i.e. no object
data

• When an object instance is instantiated using
the constructor,
circle3 = new Circle();

– An object is created on the heap, with sufficient
memory for each field in the object

– A link is created back, such that the reference
variable will point to the newly created object

• Setting a reference to null destroys the link

Reference and Instantiation (2)

22

• We do not have to instantiate every object reference
– Instead we can assign an instantiated object to a reference
circle3 = circle2;

• In doing so the object reference and instantiated object
link to the exact same object on the heap
– I.e. circle2 and circle3 point to same memory

locations

– Thus any changes made by one object to its field will be
reflect by the other object

• If we set circle2 to null, i.e: circle2 = null;

– Link between circle2 reference and object data is broken

– Leaving only circle3 pointing to the object data on heap

cslearnerr.com

Object Methods

23

• To make use of an object methods, we apply
dot notation to the object instance

• Format
identifier.method(args);

• Example
circle1.area();

Static Fields

24

• Static fields are class variables

– Each object instance shares these fields

• If one object changes the value of a static

field

– Then change is visible to every object instance

• Common use for static variables is to
maintain an auto-number count for
generating ID field values

Static Methods

25

• Static methods are methods which are used via the
Class rather than through an object instance.
– E.g. Integer.parseInt() and String.format()

• In the example, static versions of the diameter,
area and circumference methods can be
defined
//non static sevice method

public int diameter(){return 2 * radius;}

//static – class method

public static int diameter(int r){return 2 * r;}

• Static methods can be used externally, instead of
re-coding relevant calculations

– All is needed is for the radius to be provided
Circle.diameter(radius)

