Regular Expression

 \Re As discussed earlier that a^* generates

Λ, a, aa, aaa, ...

and a^+ generates a, aa, aaa, aaaa, aaaa, ..., so the language $L_1 = \{\Lambda, a, aa, aaa, ...\}$ and $L_2 = \{a, aa, aaa, aaaa, aaaa, ...\}$ can simply be expressed by a^* and a^+ , respectively.

 a^* and a^+ are called the regular expressions (RE) for L₁ and L₂ respectively.

Note: a^+ , aa^* and a^*a generate L_2 .

Recursive definition of Regular Expression(RE)

Step 1: Every letter of Σ including Λ is a regular expression. Step 2: If r₁ and r2 are regular expressions then 1.(r₁)

2.r₁ r₂

 $3.r_1 + r_2$ and

4. r₁*
 are also regular expressions.
 <u>Step 3:</u> Nothing else is a regular expression.

Defining Languages (continued)...

Hethod 3 (Regular Expressions)

- Consider the language $L=\{\Lambda, x, xx, xxx, ...\}$ of strings, defined over $\Sigma = \{x\}$.
 - We can write this language as the Kleene star closure of alphabet Σ or $L{=}\Sigma^*{=}\{x\}^*$
 - this language can also be expressed by the regular expression x^* .
- Similarly the language L={x, xx, xxx,...}, defined over $\Sigma = \{x\}$, can be expressed by the regular expression x⁺.

Now consider another language L, consisting of all possible strings, defined over $\Sigma = \{a, b\}$. This language can also be expressed by the regular expression

 $(a + b)^*$.

Now consider another language L, of strings having exactly double a, defined over Σ = {a, b}, then it's regular expression may be

b*aab*

Now consider another language L, of even length, defined over $\Sigma = \{a, b\}$, then it's regular expression may be $((a+b)(a+b))^{*}$ ○Now consider another language L, of odd length, defined over $\Sigma = \{a, b\}$, then it's regular expression may be $(a+b)((a+b)(a+b))^*$ or $((a+b)(a+b))^{*}(a+b)$

Remark

It may be noted that a language may be expressed by more than one regular expressions, while given a regular expression there exist a unique language generated by that regular expression.

#Example:

Consider the language, defined over

 $\Sigma = \{a, b\}$ of words having at least one a, may be expressed by a regular expression $(a+b)^*a(a+b)^*$.

Consider the language, defined over

 $\Sigma = \{a, b\}$ of words having at least one a and one b, may be expressed by a regular expression

7

 $(a+b)^*a(a+b)^*b(a+b)^*+(a+b)^*b(a+b)^*a(a+b)^*$.

○ Consider the language, defined over

 $\Sigma = \{a, b\}$, of words starting with double a and ending in double b then its regular expression may be $aa(a+b)^*bb$

△Consider the language, defined over

 Σ ={a, b} of words starting with a and ending in b OR starting with b and ending in a, then its regular expression may be a(a+b)*b+b(a+b)*a

TASK

Consider the language, defined over
Σ={a, b} of words beginning with a, then its regular expression may be a(a+b)*

Consider the language, defined over $\Sigma = \{a, b\}$ of **words beginning and ending in same letter**, then its regular expression may be $(a+b)+a(a+b)^*a+b(a+b)^*b$

TASK

○ Consider the language, defined over

 $\Sigma = \{a, b\}$ of **words ending in b**, then its regular expression may be $(a+b)^*b$.

○Consider the language, defined over

 Σ ={a, b} of **words not ending in a**, then its regular expression may be $(a+b)^*b + \Lambda$. It is to be noted that this language may also be expressed by $((a+b)^*b)^*$.

SummingUP Lecture 3

RE, Recursive definition of RE, defining languages by RE, $\{x\}^*$, $\{x\}^+$, $\{a+b\}^*$, Language of strings having exactly one aa, Language of strings of **even length**, Language of strings of **odd length**, RE defines unique language (as Remark), Language of strings having at least one a, Language of strings havgin at least one a and one b, Language of strings starting with aa and ending in bb, Language of strings starting with and ending in different letters.