

1

Week No. 07: KARNAUGH MAP

Karnaugh Map:

 A Karnaugh Map provides a systematic method for simplifying Boolean expressions and

will produce the simplest SOP or POS expression which is known as the minimum

expression.

 The purpose of a Karnaugh Map is to simplify a Boolean expression.

 A KM is similar to a truth table because it presents all of the possible values of input

variables and the resulting output for each value.

 The KM is an array of cells in which each cell represents a binary value of the input

variables.

 The cells are arranged in a way so that simplification of a given expression is simply

grouping the cells.

 KM can be used for expressions with two, three, four, and five variables.

 The number of cells in a KM as well as the number of rows in a truth table is equal to the

total number of possible input variable combinations.

 For three variables, the number of cells is 23 = 8 and for four variables, the number of cells

is 24 = 16.

3 – Variable Karnaugh Map:

 The 3 – variable KM is an array of eight cells. In this case, A, B, and C are used for the

variables and also other letters could be used.

 AB C 0 1 AB C 0 1

 00 00

 01 01

 11 11

 10 10

3 – Variable Karnaugh Map

4 – Variable Karnaugh Map:

 The 4 – variable KM is an array of sixteen cells. In this case, variables are A, B, C, and D.

 AB CD 00 01 11 10 AB CD 00 01 11 10

 00 00

 01 01

 11 11

 10 10

000 001

010 011

110 111

100 101

ABC ABC

ABC ABC

ABC ABC

ABC ABC

0000 0001 0011 0010

0100 0101 0111 0110

1100 1101 1111 1110

1000 1001 1011 1010

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

ABCD ABCD ABCD ABCD

2

Cell Adjacency:

 The cells in a KM are arranged so that there is only a single – variable change between

adjacent cells.

 Adjacency is defined by a single – variable change.

 Physically, each cell is adjacent to the cells that are immediately next to it on any of its four

sides.

 A cell is not adjacent to the cells that diagonally touch any of its corners.

 Also the cells in the top row are adjacent to the corresponding cells in the bottom row.

 And cells in the outer left column are adjacent to the corresponding cells in the outer right

column, this is called “Wrap – around” adjacency.

 Cells that differ by only one variable are adjacent.

 AB CD 00 01 11 10

 00

 01

 11

 10

Karnaugh Map SOP Minimizations:

 Karnaugh Map is used for simplifying Boolean expressions to their minimum form.

 A minimized SOP expression contains the fewest possible terms with the fewest possible

variables per term.

 Generally, a minimum SOP expression can be implemented with fewer logic gates than a

standard expression.

Mapping a Standard SOP expression:

 For an SOP expression in standard form, a 1 is placed on the KM for each product term in

the expression.

 Each 1 is placed in a cell corresponding to the value of a product term. For example, for the

product term ABC, a 1 goes in the 101 cell on a 3 – variable map.

 When an SOP expression is completely mapped. There will be a number of 1’s on the KM

equal to the number of product terms in the standard SOP expression.

 The cells that do not have 1 are the cells for which the expression is 0.

 Two steps of mapping:

1. Determine the binary value of each product term in the standard SOP expression.

2. Place a 1 on the KM in the cell having the same value as the product term.
 AB C 0 1

For example: ABC + ABC + ABC + ABC 00

 0 0 0 0 0 1 1 1 0 1 0 0 01

 11

 10

1 1

1

1

cslearnerr.com

3

Mapping a Non standard SOP expression:

 A Boolean expression must first be in KM.

 If expression is not in standard form, then it must be converted to a standard form.

For example: A + AB + ABC AB C 0 1

 A (B + B) + AB (C + C) + ABC 00

 AB + AB + ABC + ABC + ABC 01

 AB (C + C) + AB (C + C) + ABC + ABC + ABC 11

 ABC + ABC + ABC + ABC + ABC + ABC + ABC 10

 0 1 1 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0 1 1 0

Karnaugh Map Simplification of SOP expressions:

 The process that results in an expression containing the fewest possible terms with the

fewest possible variables is called minimization.

 After an SOP expression has been mapped, a minimum SOP expression is obtained by

grouping the 1’s and determining the minimum SOP expression from the map.

Example 1: AB C 0 1

 ABC + ABC + ABC + ABC + ABC 00

 1 0 1 0 1 1 0 0 1 0 0 0 1 0 0 01

 AC 11

 So = B + AC 10

 B

Example 2: BCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD
 ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD

 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 1 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0

 AB CD 00 01 11 10 BC

 00

 01

 11

 D

 10

So = D + BC

1 1

1 1

1

1 1

1 1

 1

1 1

1 1 1

1 1

1 1

1 1 1

4

Karnaugh Map POS Minimizations:

 Place a 0 in the K – Map for each sum term in the expression, in the cell corresponding to

the binary value of the sum term.

 Number of 0s in the KM is equal to number of sum terms in standard POS.

(A+B)

Mapping and simplification of standard POS expressions:

 AB C 0 1

Example 1: (A+B+C) (A+B+C) (A+B+C) (A+B+C) (A+B+C) 00

 (0 0 0) (0 0 1) (0 1 1) (1 0 1) (1 1 1) 01

 11

 10

 So = (A+B) (C)

 C

Example 2: (A+B+C+D) (A+B+C+D) (A+B+C+D) (A+B+C+D)

 (0 0 1 1) (0 0 0 0) (1 0 1 0) (1 0 0 1)

 AB CD 00 01 11 10

 00

So This POS expression is already 01

 simplified 11

10

Example 3: (A+B+C) (A+B+C) (A+B+C) (A+B+C) (A+B+C) (A+B+C)

 AB C 0 1

 00

 01 C

 11

 10

 (A+B)

So (A+B) (C)

Example 4: (A+B+C) (A+B+C) (A+B+C) AB C 0 1

 00

So = (B+C) (A+B+C) 01 (A+B+C)

 11

 10

 (B+C)

0 0

 0

 0

 0

0 0

 0 0

 0

 0

 0

0 0

0

 0

0

cslearnerr.com

5

Example 5: (A+B+C+D) (A+B+C+D) (A+B+C+D) (A+B+C+D) (A+B+C+D) (A+B+C+D)

(A+B+C+D) (A+B+C+D)

 AB CD 00 01 11 10

 (B+C+D)

 00

 (A+C)

 01

 11

 (C+D)

 10

So = (A+C) (C+D) (B+C+D)

Example 6: (A+B+C+D) (A+B+C+D) (A+B+C+D) (A+B+C+D) (A+B+C+D)

 AB CD 00 01 11 10

 (A+C+D) (B+C+D)

 00

 01

 (A+B+C) 11

 10

 (A+B+D)

So = (A+C+D) (A+B+C) (B+C+D)

 AB CD 00 01 11 10

Example 7: (A+B+C+D)(A+B+C+D)(A+B+C+D)

(A+B+C+D) (A+B+C+D) (A+B+C+D) 00

 01

 (A+B+C)

 11

 (A+B+C+D)

 10

 (B+C+D)

So = (A+B+C) (A+B+D) (A+B+C+D) (B+C+D)

0 0 0

0 0

 0

 0 0

0 0

0 0

 0

 0

0 0 0

 0

 0

6

Mapping and simplification of non-standard POS:

 A Boolean expression must be in a standard form before you are using a KM.

 If an expression is not in standard form then it must be converted to a standard form.

Example: (A+B) (A+B+C) (A+B+C) (B+C)

 (A+B+C) (A+B+C) (A+B+C) (A+B+C) (A+B+C) (A+B+C)

 AB C 0 1

 00

 A

 01

 (B+C)

 11

 10 (B+C)

So = A (B+C) (B+C)

0 0

0 0

0

 0

7

Week No. 08: COMBINATIONAL LOGIC

 When two or more basic logic circuits works together or combine is called basic

combinational logic circuits. The following are basic combinational logic circuits:

i. AND – OR logic

ii. AND – OR – Invert logic

iii. Exclusive – OR logic

iv. Exclusive – NOR logic

 Note: X – OR & X- NOR gates are actually a form of AND – OR logic

i. AND – OR logic:

 In general, an AND – OR circuit can have any number of AND gates, each with any

number of inputs.

 AND – OR logic produces and SOP expression. For example, AND – OR logic circuit

for the expression: X = AB + CD (SOP expression).

A AB

B

 X = AB + CD

C CD

D

 Now Truth table for this expression:

A B C D AB CD X=AB+CD

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

0 0 1 1 0 1 1

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 1 1 0 0 0 0

0 1 1 1 0 1 1

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 1 1

1 1 0 0 1 0 1

1 1 0 1 1 0 1

1 1 1 0 1 0 1

1 1 1 1 1 1 1

 There are four variables are used as A, B, C, AND D, So N = 24 = 16.

 For a 4 – input AND – OR logic circuits, the output X is HIGH (1) if both A and B are

HIGH (1) or both C and D are HIGH (1).

cslearnerr.com

8

ii. AND – OR – Invert logic:

 When the output of an AND – OR circuit is complemented (inverted), it results in an

AND – OR = Invert circuit.

 AND – OR logic directly implements SOP expression.

 POS expressions can be implemented with AND – OR – Invert logic. For example,

AND – OR – Invert logic circuit for the expression: X = AB + CD = (A + B) (C + D).

 An AND – OR – Invert circuit produces a POS output.

A AB

B

 AB + CD X = AB + CD

C CD

D

 For a 4 – input AND – OR – Invert logic circuit, the output X is LOW (0) if both input A

and B are HIGH (1) or both C and D are HIGH (1).

 A Truth table can be developed from the AND – OR truth table, simply changing all 1’s

to 0’s and all 0’s to 1’s in the output column.

A B C D AB CD AB+CD X=AB+CD

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 1 0 0 0 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 0 0 1

0 1 0 1 0 0 0 1

0 1 1 0 0 0 0 1

0 1 1 1 0 1 1 0

1 0 0 0 0 0 0 1

1 0 0 1 0 0 0 1

1 0 1 0 0 0 0 1

1 0 1 1 0 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 0

1 1 1 0 1 0 1 0

1 1 1 1 1 1 1 0

9

iii. Exclusive – OR logic:

 The XOR gate is actually a combination of other gates.

 Because of its importance, this circuit is considered a type of logic gates with its own

unique symbol, it is actually a combination of two AND gates, one OR gate and two

inverters.

 A AB

 B

 X = AB + AB

 A

 B AB

 Truth table for an Exclusive – OR logic for the above expression:

 Logic symbol for Exclusive – OR logic:

 A X

 B

A A B

B

A B AB AB X = AB + AB

0 0 0 0 0

0 1 0 1 1

1 0 1 0 1

1 1 0 0 0

A B A B

0 0 0

0 1 1

1 0 1

1 1 0

cslearnerr.com

10

iv. Exclusive – NOR logic:

 The complement of the XOR function is the Exclusive NOR.

 The exclusive – NOR can be implemented by simply inverting the output of an

exclusive – OR. For example, Exclusive – NOR logic for the expression: X = AB + AB

 A AB

 B

 X = AB + AB

 A

 B AB

 Truth table for an Exclusive – NOR logic for the above expression:

 Logic symbol for Exclusive – NOR logic:

 A

 B

 A A B

 B

A B AB AB AB + AB X = AB + AB

0 0 0 0 0 1

0 1 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 1

A B A B A B

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

11

Implementing Combinational Logic:

 Now how we will implement a combinational logic circuit.

 From a Boolean Expression to a Logic Circuit:

 Let’s examine the Boolean expression: X = AB + CDE

AND gates

 X = AB + CDE

 OR gate

 Logic Circuit for the above expression:

A AB

B

 X = AB + CDE

C CDE

D

E

 For every Boolean expression, there is a logic circuit and for every logic circuit, there is a

Boolean expression.

 Now let’s take another example, implement the following expression:

 X = AB (CD + EF) = ABCD + ABEF

 A X= AB (CD + EF)

 B

C CD

 D

D

 CD+EF

E EF

F

 =

A

B ABCD

C

D

 X = ABCD + ABEF

E

F ABEF

12

 From a Truth Table to a Logic Circuit:

 The Boolean SOP expression obtained from the truth table by ORing the Product terms

which X = 1.

 From the following truth table we obtained the SOP expression: X = ABC + ABC

A B C X Product term

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1 ABC

1 0 0 1 ABC

1 0 1 0

1 1 0 0

1 1 1 0

 Now Logic Circuit of the above expression:

 A ABC

 X = ABC + ABC

 B

 C ABC

The Universal Property of NAND and NOR gates:

 The NAND gate as a universal logic circuit:

 The NAND gate is a universal gate because it can be used to produce the NOT, the

AND, the OR and the NOR functions

 Combinations of NAND gates can be used to produce any logic function.

 The following are the universal properties of NAND gate:

a) One NAND gate used as an inverter:

A A = A A

b) Two NAND gates used as an AND gate:

 A AB

 A AB AB=AB ≡ B

 B

13

c) Three NAND gates used as an OR gate:

 A AB=A+B

 A A A+B

 = B

 B

 B

d) Four NAND gates used as an NOR gate:

 A AB AB=A+B A+B

 A A

 = B

 B

 B

 The NOR gate as a universal logic circuit:

 Like the NAND gate, the NOR gate can be used to produce the NOT, AND, OR, and

NAND functions.

 Combinations of NOR gates can be used to produce any logic function.

 The following are the universal properties of NOR gate:

a) One NOR gate used as an inverter:

 A A = A A

b) Two NOR gate used as an OR gate:

 A A+B A+B=A+B = A A+B

 B B

c) Three NOR gate used as an AND gate:

 A A+B = A AB

 B

 B

d) Four NOR gate used as an NAND gate:

 A A+B A+B=AB AB

 A = A

 B B

 B

 B

14

Combinational Logic using NAND and NOR gates:

 NAND Logic: A NAND gate can function as either a NAND or a negative – OR

by De Morgan Theorem. For example:

AB = A + B By De Morgan’s Theorem

 Negative – OR gate

 NAND gate

 Now expression: X = (AB) (CD) = (A + B) (C + D)

 = (A + B) (C + D)

 = AB + CD

 = AB + CD

 A AB

 B

 X= (AB) (CD)

 C

 D CD

 =

 A AB

 B X = AB + CD

 C

 D CD

 NOR Logic: A NOR gate can function as either a NOR or a negative – AND

by De Morgan’s Theorem. For example:

A + B = AB By De Morgan’s Theorem

 Negative - AND

 NOR gate

 Now NOR logic circuit for the following expression:

 X = A + B + C + D = (A + B) (C + D) = (A + B) (A + B)

 A

 B X = A + B + C + D

 C

 D

 =

 A

 B X = (A + B) (C + D)

 C

 D

cslearnerr.com

15

Week No. 09: BASIC ADDERS

 Adders are important in computers and also in other types of digital systems in which

numerical data are processed. There are two types of adders:

1. Half Adder

2. Full Adder

1. Half Adder:

 A half adder adds two bits and produces a sum and an output carry.

 The operations are performed by a logic circuit called a half adder.

 The half adder accepts two binary digits on its inputs and produces two binary digits on its

output sum bit and a carry bit.

 Logic symbol for a half adder:

 Sum

 Input bits Output

 Carry

 Truth table for half adder:

 ∑ = Sum

 Cout = Output Carry

 A and B = Input Variables

 The output carry (Cout) is a 1 only when both A and B are 1’s. Therefore Cout can be

expressed as the AND of the input variables: Cout = AB

 The sum output (∑) is a 1 only if input variables A and B are not equal. Therefore the sum

can be expressed as the Exclusive – OR of the input variables: ∑ = A B

 Half Adder logic diagram:

∑ = A B

 A Cout = AB

 B

 ∑

A ∑

B Cout

A B Cout ∑

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

cslearnerr.com

16

2. Full Adder:

 The second category of adder is the full adder.

 A full adder has an input carry while the half adder does not.

 The full adder accepts two input bits and an input carry and generates a sum output and an

output carry.

 The basic difference between a full adder and a half adder is that the full adder accepts an

input carry.

 A logic symbol for a full adder:

 Sum

 Input bits

 Input Carry Output Carry

 Truth table for a full adder:

Cin = Input Carry

Cout = Output Carry

∑ = Sum

A and B = Input variables

 For the input carry (Cin) to be added to the input bits, it must be exclusive – ORed with A B,

yielding the equation for the sum output of the full – adder: ∑ = (A B) Cin

 This means that to implement the full adder function, two 2 – inputs exclusive – OR gates

can be used.

 The first must generate the term A B, and second has as its inputs the output of the first

XOR gate and the input carry.

 Complete logic circuit for a full adder:

A A B

 B ∑ = (A B) Cin

 Cin

 (A B) Cin

 Cout = AB + (A B) Cin

 AB

 The output carry is a 1 when both inputs to the first XOR gate are 1’s or when both inputs to

the second XOR gate are 1’s.

 The output carry of the full adder is therefore produced by input A ANDed with input B and

A B ANDed with Cin and these two terms are ORed: Cout = AB + (A B) Cin

 ∑

A ∑

B

Cin Cout

A B Cin Cout ∑

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

17

Parallel Binary Adders:

 Two or more full adders are connected to form Parallel Binary Adders.

 A single full adder is capable of adding two 1 – bit numbers and an input carry.

 To add binary numbers with more than one bit, you must use additional full adders.

 When one binary number is added to another, each column generates a sum bit and a 1 or 0

carry bit to the next column to the left. For example:
 1 Carry bit from right column

 + 11

 01

In this case, the carry 100

 Bit from second column

Becomes a sum bit

 To add two binary numbers, a full adder is required for each bit in the numbers.

 So for 2-bit numbers, two adders are needed, for 4-bit numbers, four adders used and so on.

 The carry output of each adder is connected to the carry input of the next higher order adder.

 Either a half adder can be used for the least significant position or the carry input of a full

adder can be made 0 (Grounded) because there is no carry input to the least significant bit

position.

 2– Bit Parallel Adders:

 A2 B2 A1 B1

 2 – bit sum C0

 A Inputs

 B Inputs

 Input Carry Output Carry

 (MSB) ∑3 ∑2 (LSB) ∑1

(a) Logic symbol (b) Block Diagram

 The least significant bits (LSB) of the two numbers are represented by A1 and B1.

 The next higher bits are represented by A2 and B2.

 Three sum bits are ∑1, ∑2, and ∑3.

 The output carry from the left most full adder becomes the most significant bit (MSB) in

the sum.

3 – Bit Parallel Adders: A3 B3 A2 B2 A1 B1

A C0

Inputs 3-bit sum

B

Inputs

 Input Carry Output Carry C3=∑4 ∑3 ∑2 ∑1

(a) Logic Symbol (b) Block Diagram

 ∑

1 A ∑ 1

2 2

1 B

2

C0 C2

A B Cin

C1 ∑

A B Cin

C2 ∑

1 ∑ 1

2 A ∑ 2

3 3

1

2 B

3

C0 C3

A B Cin

C2 ∑

A B Cin

C1 ∑

A B Cin

C3 ∑

18

4 – Bit Parallel Adders:

 A Inputs 4-bit sum

 B Inputs

 Input Carry Output Carry

(a) Logic Symbol

 A4 B4 A3 B3 A2 B2 A1 B1

 C0

 C4=∑5 ∑4 ∑3 ∑2 ∑1

(b) Block Diagram

 Truth table for a 4 – bit Parallel Adders:

- The subscript n represents the adder bits and can be 1, 2, 3, or 4 adders.

- Cn-1 is the carry from previous adder

- Carries C1, C2, and C3 are generated internally.

- C0 is an external carry input.

- C4 is the output carry.

1 ∑ 1

2 A ∑ 2

3 3

4 4

1

2 B

3

4

C0 C4

A B Cin

C3 ∑

A B Cin

C2 ∑

A B Cin

C1 ∑

A B Cin

C4 ∑

Cn-1 An Bn ∑n Cn
0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

19

Comparators:

 The basic function of a comparator is to compare the magnitudes of two binary quantities to

determine the relationship of those quantities.

 In its simplest form, a comparator circuit determines whether two numbers are equal.

Equality:

 The exclusive – NOR gate can be used as a basic comparator because its output is a 0 if

the two input bits are not equal and a 1 if the input bits are equal. The following figure

shows the exclusive – NOR gate as a 2 – bit comparator.

0 1 0 0

0 The input bits are equal 1 The input bits are not equal

1 0 1 1

 0 The input bits are not equal 1 The input bits are equal

 In order to compare binary numbers containing two bits each, an additional exclusive –

NOR gate is necessary.

 The two LSB’s of the two numbers are compared by gate G1 and the two MSB’s are

compared by gate G2.

 If the two numbers are equal, their corresponding bits are the same, and the output of

each exclusive – NOR gate is a 1.

 If the corresponding sets of bits are not equal, a 0 occurs on that exclusive – NOR gate

output.

 Logic diagram for equality comparison of two 2 – bit numbers:

 (LSB’s) A0

 B0

 A = B

 (MSB’s) A1 HIGH indicates equality

 B1

 In order to produce a single output indication an equality or inequality of two numbers,

an AND gate can be combined with exclusive – NOR gates.

 Thus the output of the AND gate indicates equality (1) or inequality (0) of the two

numbers. For example:

(a) Compare two numbers 10 and 10? (b) Compare two numbers 11 and 10?

 A0=0 1 A0=1

 B0=0 1 B0=0 0
 Equal Not equal

 A1=1 A1=1

 B1=1 1 B1=1

cslearnerr.com

20

Inequality:

 In addition to the equality output, many comparators provide an additional output that

indicates which of the two binary numbers being compared is the larger.

 There is an output that indicates when number A is greater than B (A>B) and an output

that indicates when number A is less than number B (A<B).

 To determine an inequality of binary numbers A and B, you first examine the highest

order bit in each number. The following conditions are possible:

1. If A3 = 1 and B3 = 0, Number A is greater than B.

2. If A3 = 0 and B3 = 1, Number A is less than B.

3. If A3 = B3 = 1, Then you must examine the next lower bit position for an in equality.

 These three operations are valid for each bit position in the numbers.

 Logic symbol for a 4 – bit Comparator with inequality indication:

 A0

 A1

 A2

 A3

 B0

 B1

 B2

 B3

 The general procedure used in a comparator is to check for an inequality in a bit position,

starting with highest order bits (MSB’s).

 When such an inequality is found, the relationship of the two numbers is established and

any other inequalities in lower order bit positions must be ignored because it is possible

for an opposite indication to occur, the highest order indication must take precedence.

COMP

0

 A

 A>B

3

 A=B

0

 B A<B

3

Discover comprehensive notes for BSCS, BSIT and BSAI courses conveniently gathered on our user-friendly website, www.cslearnerr.com

21

Week No. 10: DECODERS

Decoders:

 A decoder is a combinational circuit that converts binary information from n inputs lines to

a maximum of 2n unique output lines. OR a decoder is a digital circuit that detects the

presence of a specified combination of bits (code) on its inputs and indicates the presence of

that code by a specified output level.

 The decoders are also called n (input) – to – m (maximum=2n) line decoders where m < 2n.

 An AND gate can be use as the basic decoding element because it produces a HIGH output

only when all of its inputs are HIGH.

 A NAND also can be used as the basic decoding element with an active – LOW output.

 3 – bit Decoder:

 In order to decode all possible combinations of 3 bits, eight decoding gates are required

(23 = 8). This type of decoder is commonly called a 3 – line – to – 8 – line decoder

because there are 3 inputs and eight outputs.

 Logic symbol & diagram for 3 – line – to – 8 – line Decoder:

 D0 = x y z

 D1 = x y z

 Z

 D2 = x y z

 Y D3 = x y z

 X D4 = x y z

 D5 = x y z

 D6 = x y z

 D7 = x y z

 Truth table of 3 – line – to – 8 – line Decoder (Using AND gate with an

active – HIGH output):

 0

 1

 2

1 3

2 4

4 5

 6

 7

Decoding Function x y z D0 D1 D2 D3 D4 D5 D6 D7

D0 = x y z 0 0 0 1 0 0 0 0 0 0 0

D1 = x y z 0 0 1 0 1 0 0 0 0 0 0

D2 = x y z 0 1 0 0 0 1 0 0 0 0 0

D3 = x y z 0 1 1 0 0 0 1 0 0 0 0

D4 = x y z 1 0 0 0 0 0 0 1 0 0 0

D5 = x y z 1 0 1 0 0 0 0 0 1 0 0

D6 = x y z 1 1 0 0 0 0 0 0 0 1 0

D7 = x y z 1 1 1 0 0 0 0 0 0 0 1

22

4 – bit Decoder:

 In order to decode all possible combinations of four bits, sixteen decoding gates are

required (24 = 16). This type decoder is commonly called either a 4 – lines – to – 16 –

lines decoder or 1 – of – 16 decoder because for any given code on the inputs, one of the

sixteen outputs is activated.

 Logic symbol for a 4 – lines – to – 16 – lines Decoder:

 If an active – LOW output is required for decoded number, the entire decoder can be

implemented with NAND gates and Inverters.

 Truth table for a 4 – lines – to – 16 – lines Decoder with active – LOW outputs:

 In order to decode each of the sixteen binary codes, sixteen NAND gates are required (as

AND gates can be used to produce active – HIGH outputs).

BIN / DEC

 0

 1

 2

 3

 4

1 5

2 6

4 7

8 8

 9

 10

 11

 12

 13

 14

 15

w x y z Decoding

Function

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15

0 0 0 0 w x y z = D0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 w x y z = D1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 w x y z = D2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 w x y z = D3 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 w x y z = D4 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 w x y z = D5 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

0 1 1 0 w x y z = D6 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

0 1 1 1 w x y z = D7 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

1 0 0 0 w x y z = D8 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

1 0 0 1 w x y z = D9 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

1 0 1 0 w x y z = D10 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1 0 1 1 w x y z = D11 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

1 1 0 0 w x y z = D12 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 0 1 w x y z = D13 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 0 w x y z = D14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 w x y z = D15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

cslearnerr.com

23

 BCD – to – Decimal Decoder:

 The BCD – to – Decimal decoder converts each BCD code into one of ten possible

decimal digit indications.

 It is referred as a 4 – line – to – 10 – lines decoder or 1 – of – 10 decoders.

 Truth table for BCD – to – Decimal (4 – line – to – 10 line) Decoder with

active – LOW outputs:

 In order to decode each of the ten binary codes, ten NAND gates are required.

Encoders:

 An encoder is a digital function that produces a reverse operation from that of a decoder. An

encoder has 2n (or less) input lines and n output lines.

 The output lines generate the binary code for 2n input variables.

 OR gate can be used as the basic encoding element because it produces a HIGH output only

when one of its inputs is HIGH.

The Decimal – to – BCD Encoder:

 This type of encoder has ten inputs – one for each decimal digit and four outputs

corresponding to the BCD code.

 This is a basic 10 – line – to – 4 line encoder.

 Logic symbol for a Decimal – to – BCD encoder:

 Decimal inputs

 BCD output

Decimal

Digit

w x y z Decoding

Function

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9

0 0 0 0 0 w x y z = D0 0 1 1 1 1 1 1 1 1 1

1 0 0 0 1 w x y z = D1 1 0 1 1 1 1 1 1 1 1

2 0 0 1 0 w x y z = D2 1 1 0 1 1 1 1 1 1 1

3 0 0 1 1 w x y z = D3 1 1 1 0 1 1 1 1 1 1

4 0 1 0 0 w x y z = D4 1 1 1 1 0 1 1 1 1 1

5 0 1 0 1 w x y z = D5 1 1 1 1 1 0 1 1 1 1

6 0 1 1 0 w x y z = D6 1 1 1 1 1 1 0 1 1 1

7 0 1 1 1 w x y z = D7 1 1 1 1 1 1 1 0 1 1

8 1 0 0 0 w x y z = D8 1 1 1 1 1 1 1 1 0 1

9 1 0 0 1 w x y z = D9 1 1 1 1 1 1 1 1 1 0

DEC / BCD

0

1

2

3 1

4 2

5 4

6 8

7

8

9

cslearnerr.com

24

 Truth table of Decimal – to – BCD Encoder:

- w = D8 + D9

- x = D4 + D5 + D6 + D7

- y = D2 + D3 + D6 + D7

- z = D1 + D3 + D5 + D7 + D9

 Basic logic diagram of a Decimal – to – BCD Encoder:

D0 w = D8 + D9

D1

D2

D3

 x = D4 + D5 + D6 + D7

D4

D5

 y = D2 + D3 + D6 + D7

D6

D7

D8 z = D1 + D3 + D5 + D7 + D9

D9

Decimal Digit D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 w x y z

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 1

2 0 0 1 0 0 0 0 0 0 0 0 0 1 0

3 0 0 0 1 0 0 0 0 0 0 0 0 1 1

4 0 0 0 0 1 0 0 0 0 0 0 1 0 0

5 0 0 0 0 0 1 0 0 0 0 0 1 0 1

6 0 0 0 0 0 0 1 0 0 0 0 1 1 0

7 0 0 0 0 0 0 0 1 0 0 0 1 1 1

8 0 0 0 0 0 0 0 0 1 0 1 0 0 0

9 0 0 0 0 0 0 0 0 0 1 1 0 0 1

25

Week No. 11: MULTIPLEXERS

Multiplexers:

 A multiplexer (MUX) is a device that allows digital information from several sources to be

routed onto a single line for transmission over that line to a common destination.

 The basic multiplexer has several data input lines and a single output line.

 Multiplexer also has data – select inputs, which permit digital data on any one of the inputs

to be switched to the output line.

 Multiplexers are also known as data selectors.

 Normally, there are 2n input lines an ‘n’ selection lines whose bit combinations determine

which input is selected.

 4 – to – 1 line Multiplexer:

 A logic symbol for a 4 – input multiplexer (MUX):

 Data S0

 Select S1

 Y

 Data D0 Data output

 inputs D1

 D2

 D3

 In multiplexer, data goes from several lines to one line.

 Note that there are two data – select lines because with two select bits, any inputs one of

the four data – input lines can be selected.

Data selection for a 4 – to – 1 line Multiplexer:

 The data output is equal to D0 only if S1 = 0 and S0 = 0, Y = D0 S1 S0.

 The data output is equal to D1 only if S1 = 0 and S0 = 1, Y = D1 S1 S0.

 The data output is equal to D2 only if S1 = 1 and S0 = 0, Y = D2 S1 S0.

 The data output is equal to D3 only if S1 = 1 and S0 = 1, Y = D3 S1 S0.

Data select inputs Input switched

S1 S0

0 0 D0

0 1 D1

1 0 D2

1 1 D3

 When these terms are ORed, the total expression for the data output is:

 Y = D0 S1 S0 + D1 S1 S0 + D2 S1 S0 + D3 S1 S0

 The implementation of this equation requires four 3 – input AND gates, a 4 – input

OR gate, and two inverters to generate the complements of S1 and S0.

 Because data can be selected from any one of the input lines, the following circuit is

also referred to as a data selector.

MUX

0

1

26

 Logic diagram for a 4 – input multiplexer:

 S0

 S1

 D0 D0 S1 S0

 D1 D1 S1 S0 Y

 D2 D2 S1 S0

 D3 D3 S1 S0

 Y = D0 S1 S0 + D1 S1 S0 + D2 S1 S0 + D3 S1 S0

For example: D0 = 1, D1 = 1, D2 = 0, D3 = 1

i. S1 = 0 and S0 = 0

Y = D0 S1 S0 + D1 S1 S0 + D2 S1 S0 + D3 S1 S0 = 1.0.0 + 1.0.0 + 0.0.0 + 1.0.0

 = 1.1.1 + 1.1.0 + 0.0.1 + 1.0.0 = 1 + 0 + 0 + 0 = 1

ii. S1 = 1 and S0 = 1

Y = D0 S1 S0 + D1 S1 S0 + D2 S1 S0 + D3 S1 S0 = 1.1.1 + 1.1.1 + 0.1.1 + 1.1.1

 = 1.0.0 + 1.0.1 + 0.1.0 + 1.1.1 = 0 + 0 + 0 + 1 = 1

iii. S1 = 1 and S0 = 0

Y = D0 S1 S0 + D1 S1 S0 + D2 S1 S0 + D3 S1 S0 = 1.1.0 + 1.1.0 + 0.1.0 + 1.1.0

 = 1.0.1 + 1.0.0 + 0.1.1 + 1.1.0 = 0 + 0 + 0 + 0 = 0

iv. S1 = 0 and S0 = 1

Y = D0 S1 S0 + D1 S1 S0 + D2 S1 S0 + D3 S1 S0 = 1.0.1 + 1.0.1 + 0.0.1 + 1.0.1

 = 1.1.0 + 1.1.1 + 0.0.0 + 1.0.1 = 0 + 1 + 0 + 0 = 1

cslearnerr.com

27

Demultiplexer:

 A Demultiplexer (DEMUX) basically reveres the multiplexing function.

 DEMUX takes digital information from one line and distributes it to a given number of

output lines.

 Demultiplexer is also known as a data distributor.

 Decoder can also be used as Demultiplexer.

 In a Demultiplexer, data goes from one line to several lines.

1 – to – 4 line Demultiplexer:

 The following figure shows a 1 – to – 4 line Demultiplexer (DEMUX) circuit.

 The data – input line goes to all of the AND gates.

 The two data – select lines enable only one gate at a time, and the data appearing on the

data – input line will pass through the selected gate to the associated data – output line.

 Logic symbol & logic diagram for 1 – to – 4 line Demultiplexer:

Data select lines S0

 S1 D0

 D1 Data output lines

 D2

 D3

 Data input

 Logic symbol

 Data input D0 = Din S1 S0

 S0 D1 = Din S1 S0 Data output lines

Select

lines

 S1 D2 = Din S1 S0

 D3 = Din S1 S0

 Logic diagram

For example: Din = 10101

i. S1 = 0 & S0 = 0 Then D0=DinS1S0=10101, ii. S1 = 0 & S0 = 1 Then D1=DinS1S0=10101

iii. S1 = 0 & S0 = 1 Then D2=DinS1S0=10101, iv. S1 = 1 & S0 = 1 Then D3=DinS1S0=10101

DEMUX

0

1

28

Week No. 12: LATCHES
Latches:

 The latch is a type of temporary storage device that has two stable states (bistable) and is

normally placed in a category separate from that of flip – flops.

 Latches are similar to flip – flops because they are bistable devices that can reside in

either of two states using a feedback arrangement in which the outputs are connected

back to the opposite inputs.

 The main difference between latches and flip – flops is in the method used for changing

their state.

The S – R (SET – RESET) Latch:

 A latch is a type of bistable logic device or multivibrator.

 An active – HIGH input S – R latch is formed with two cross – coupled NOR gates as

shown in the following figure (a).

 An active – LOW input S – R latch is formed with two cross – coupled NAND gates as

shown in the following figure (b).

 Note that the output of each gate is connected to an input of the opposite gate. This

produces the regenerative feedback that is characteristic of all latches and flip – flops.

R Q S Q

 Q Q

 S R

(a) Active – HIGH input S – R latch (b) Active – LOW input S – R latch

 A latch can reside in either of its two states, SET or RESET.

 SET means that the Q output is HIGH.

 RESET means that the Q output is LOW.

Logic Symbols:

 S Q S Q

 R Q R Q

(a) Active – HIGH input S – R latch (b) Active – LOW S – R latch

Truth table for an active – LOW input S – R latch:

 Inputs Outputs Comments

 S R Q Q

1 1 NC NC No change. Latch remains in present state

0 1 1 0 Latch SET

1 0 0 1 Latch RESET

0 0 1 1 Invalid Condition

S

R

S

R

cslearnerr.com

29

The Gated S – R Latch:

 A gated latch requires an enable input, EN (G is also used to designate an enable input).

 The logic diagram and logic symbol for a gated S – R latch are shown in the following

figure.

 The S and R inputs control the state to which the latch will go when a HIGH level is

applied to the EN input.

 The latch will not change until EN is HIGH, but as long as it remains HIGH, the output is

controlled by the state of the S and R inputs.

 In this circuit, the invalid state occurs when both S and R are simultaneously HIGH and

EN is also HIGH.

 S Q

 Q

 EN

 Q

 Q

 R

(a) Logic Diagram (b) Logic Symbol

The Gated D Latch:

 Another type of gated latch is called the D latch.

 It differs from the S –R latch because it has only one input in addition to EN. Theis input

is called the D (data) input. The following figure contains a logic diagram and logic

symbol of a D latch.

 When the D input is HIGH and EN input is HIGH, the latch will SET.

 When the D input is LOW and EN is HIGH, the latch will RESET.

 Stated another way, the output Q follows the input D when EN is HIGH.

 D Q

 Q

 EN

 Q

 Q

(a) Logic Diagram (b) Logic Symbol

Edge – Triggered Flip – Flops:

 Flip – Flops are synchronous bistable devices, also known as bistable multivibrators.

 In this, the term synchronous means that output changes state only at a specified point on

the triggering input called the clock (CLK), which is designates as a control input, C, that

is , changes in the output occur in synchronization with the clock.

 A Flip – Flop circuit can be constructed from two NAND gates or two NOR gates.

S

EN

R

D

EN

30

1 R (reset) Q

0

 Q

1 S (set)

0

(a) Logic Diagram

(b) Truth Table

- Basic Flip – Flop circuit with NOR gates

1 S (set) Q

0

 Q

1 R (reset)

0

(c) Logic Diagram

(d) Truth Table

- Basic Flip – Flop circuit with NAND gates

 An edge – triggered flip – flop changes state either at the positive edge (rising edge) or at

the negative edge (falling edge) of the clock pulse and is sensitive to its inputs only at the

transition of the clock.

 Three types of edge – triggered flip – flops are:

1. S – R flip – flop (S – R is the basis for the D and J – K flip – flops)

2. D flip – flop

3. J – K flip – flop

 Logic symbols for all of these flip – flops:

 S Q D Q J Q

 C C Q C

 R Q K Q

 S Q D Q J Q

 C C Q C

 R Q K Q

(a) S – R Flip – Flop (b) D Flip – Flop (c) J – K Flip – Flop

S R Q Q

 1 0 1 0

0 0 1 0 (after S=1, R=0)

0 1 0 1

0 0 0 1 (after S=0, R=1)

1 1 0 0

S R Q Q

 1 0 0 1

1 1 0 1 (after S=1, R=0)

0 1 1 0

1 1 1 0 (after S=0, R=1)

0 0 1 1

cslearnerr.com

31

 Note that each type can either positive edge – triggered (No bubble at C input) or

negative edge – triggered (bubble at C input). The key to identifying an edge – triggered

flip – flop by its logic symbol is the small triangle inside the clock at clock (C) input.

This triangle is called the dynamic input indicator.

 The dynamic input indicator means the flip – flop changes state only the edge of a

clock pulse.

1. The Edge – Triggered S – R Flip – Flop:

 An S – R flip – flop should never have both S and R inputs HIGH at the same

time when clocked.

 The S and R inputs of the S – R flip – flop are called synchronous inputs because

data on these inputs are transferred to the flip – flops output only on the

triggering edge of the clock pulse.

 When S is HIGH and R is LOW, the Q output goes HIGH on the triggering edge

of the clock pulse, and the flip – flop is SET.

 When S is LOW and R is HIGH, the Q output goes LOW on the triggering edge

of the clock pulse, and the flip – flop is RESET.

 When both S and R are LOW, the output does not change from its prior state.

 An invalid condition exists if S and R are both HIGH when an active clock edge

occurs.

 This basic operation of a positive edge – triggered flip – flop is shown in the

following figure and the Truth Table of flip – flop.

 Remember, the flip – flop cannot change state except on the triggering edge of a

clock pulse. The S and R inputs can be changed at any time when the clock input

is LOW or HIGH (except for a very short interval around the triggering

transition of the clock) without affecting the output.

 1 1

1 Q 0 0 S Q 0

 +O +O

 CLK CLK

 +O +O

 0 Q 1 R Q

(a) S=1, R=0 flip – flop SETs on positive clock edge. (b) S=0 , R=1 flip – flop RESETs

 (If already SET, it remains SET) on positive clock edge.

(If already RESET, it

remains RESET)

0 Q = Q0 (no change)

 CLK

 +O

 0 Q

(b) S=0, R=0 flip – flop does not change. (If SET, it remains SET, if RESET,

it remains RESET)

S

 C

R

S

 C

R

32

 Truth Table for a positive edge – triggered S – R flip – flops:

 = Clock transition LOW or HIGH

 X = Irrelevant (“don’t care”)

 Q0 = Output level prior to clock transition

 The operation and truth table for a negative edge – triggered S – R flip – flop are

the same as those for a positive edge – triggered device except that the falling

edge of the clock pulse is triggering edge.

2. The Edge – Triggered D Flip – Flop:

 The D flip – flop is useful when a single data bit (1 or 0) is to be stored.

 The addition of an inverter to an S – R flip – flop creates a basic D flip – flop as

in the following figure, where a positive edge – triggered type.

 Note that the flip – flop in the following figure has only one input, the D input in

addition to the clock.

 If there is a HIGH on D input when a clock pulse is applied, the flip – flop will

set, and the HIGH on the D input is stored by the flip – flop on the positive –

going edge of the clock pulse.

 If thee is a LOW on the D input when the clock pulse is applied, the flip – flop

will reset, and the LOW on the D input is stored by the flip – flop on the leading

edge of the clock pulse.

 In the SET state the flip – flop is storing a 1, and in the RESET state it is storing a 0.

 The logical operation of the positive edge – triggered D flip – flop is summarized

in the following table.

 The operation of a negative edge – triggered device is the same except that

triggering occurs on the falling edge of the clock pulse.

 Remember, Q follows D at the active or triggering clock edge.

D Q

 CLK

 Q = Clock transition, LOW or HIGH

- A positive edge – triggered D flip – flop formed with an S – R flip – flop and an Inverter.

3. The Edge – Triggered J – K Flip – Flop:

 The J – K flip – flop is versatile and is a widely used type of flip – flop.

 The functioning of the J – K flip – flop is identical to that of the S – R flip – flop

in the SET, RESET, and no – change condition of operation. The difference is

that the J – K flip – flop has no invalid state as does the S – R flip – flop.

 The following figure shows the basic internal logic for a positive edge –

triggered flip – flop. It differs from S – R edge – triggered J – K flip – flop in

S R CLK Q Q Comments

0 0 X Q0 Q0 No change

0 1 0 1 RESET

1 0 1 0 SET

1 1 ? ? Invalid

D CLK Q Q Comments

1 1 0 SET (stores a 1)

0 0 1 RESET (stores a 0)

S

 C

R

33

that the Q output is connected back to the input of gate G2 and the Q output is

connected back to the input of gate G1.

 The two control inputs are labeled J and K in honor of Jack Kilby, who invented

the integrated circuit.

 A J – K flip – flop can also be of the negative edged - triggered type, in which

case the clock input is inverted.

 J G1 Q

 G2 Q

CLK

Pulse transition on Q

detector G3 G4 Q

 K

 = Clock transition, LOW or HIGH

 Q0 = Output prior to clock transition

- Logic diagram for a positive edge – triggered J – K flip – flop.

Master – Slave Flip – Flop:

 A Master – Slave flip – flop is constructed from two separate flip – flops. One circuit

serves as a master and the other as a slave, and the overall circuit is referred to as a

master – slave flip – flop.

 The logic diagram of an R S master – slave flip – flop is shown in the following figure. It

consists of a master flip – flop, a slave flip – flop, and an inverter.

 When clock pulse CP is 0, the output of the inverter is 1. Since the clock input of the

slave is 1, the flip – flop is enabled and output Q is equal to Y , while Q is equal to Y.

 The master flip – flop is disabled because CP = 0.

 When the pulse becomes 1, the information then at the external R and S inputs is

transmitted the master flip – flop. The slave flip – flop, however, is isolated as long as the

pulse is at its 1 level, because the output of the inverter is 0. When the pulse returns to 0,

the master flip – flop is isolated, which prevents the external inputs from affecting it. The

slave flip – flop then goes to the same state as the master flip – flop.

S Y Q Y

 R Q

 Y Q

 CP

 MASTER – SLAVE Flip – Flop

- Logic diagram of Master – Slave flip – flop.

J K CLK Q Q Comments

0 0 Q0 Q0 No change

0 1 0 1 RESET

1 0 1 0 SET

1 1 Q0 Q0 Toggle

S

 Master

R

S

 Slave

R

cslearnerr.com

34

Week No. 13: COUNTERS

Counter:

 Flip – Flops can be connected together to perform counting operations, such a group of

flip – flops is a counter.

 The number of flip – flops used and the way in which they are connected determine the

number of states (called the modulus) and also the specific sequence of states that the

counter goes through during each complete cycle.

 Counters are classified into two broad categories according to the way they are clocked:

Asynchronous and Synchronous. Within each of these two categories, counters are

classified primarily by the type of sequence, the number of states, or the number of flip –

flops in the counter.

Asynchronous Counter:

 The term asynchronous refers to events that do not have a fixed time relationship with

each other and, generally, don’t occur at the same time.

 An asynchronous counter is one in which the flip – flops (FF) within the counter don’t

change states at exactly the same time because they don’t have a common clock pulse.

 In asynchronous counters, the first flip – flop is clocked by the external clock pulse and

then each successive flip – flop is clocked by the output of the preceding flip – flop.

 The clock input of an asynchronous counter is always connected only to the LSB

flip – flop.

 Asynchronous counters are also known as ripple counters.

2 – Bit Asynchronous Binary Counter:

 Figure 8-1 shows a 2-bit counter connected for asynchronous operation.

 Notice that the clock (CLK) is applied to the clock input (C) of only the first flip –

flop, FF0, which is always the least significant bit (LSB). The second flip – flop,

FF1, is triggered by the Q0 output of FF0. FF0 changes state at the positive – going

edge of each clock pulse, but FF1 changes only when triggered by a positive -

going transition of the Q0 output of FF0. Because of the inherent propagation

delay time through a flip – flop, a transition of the input clock pulse (CLK) and a

transition of the Q0 output of FF0 can never occur at exactly the same time.

Therefore, the two flip – flops are never simultaneously triggered, so the counter

operation is asynchronous.

 In digital logic, Q0 is always the LSB unless otherwise specified.

 HIGH

 FF0 FF1

 J0 Q0 J1 Q1

CLK C C

 K0 Q0 K1 Q1

- Figure 8-1: A 2-bit asynchronous binary counter.

cslearnerr.com

35

 State Table for Figure 8-1:

Clock Pulse Q1 Q0

Initially 0 0

1 0 1

2 1 0

3 1 1

 4 (recycles) 0 0

- Binary state sequence for the counter in Figure 8-1.

 3 – Bit Asynchronous Binary Counter:

 The state sequence for a 3-bit binary counter is listed in Table 8-2, and a 3-bit

asynchronous binary counter is shown in Figure 8-3. The basic operation is the

same as that of the 2-bit counter except that the 3-bit counter has eight states, due

to its three flip – flops.

 HIGH

 FF0 FF1 FF2

 J0 Q0 J1 Q1 J2 Q2

CLK C C C

 K0 Q0 K1 Q1 K2

- Figure 8-3: A 3-bit asynchronous binary counter

 State Table 8-2:

Clock Pulse Q2 Q1 Q0

Initially 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (recycles) 0 0 0

- State sequence for a 3-bit binary counter

Synchronous Counter:

 The term synchronous refers to events that have a fixed time relationship with each other.

 A synchronous counter is one in which all the flip – flops in the counter are clocked at the

same time by a common clock pulse.

 In synchronous counters, the clock input is connected to all of the flip – flops so that they

are clocked (means the clock input goes to each flip – flop) simultaneously.

36

 2 – Bit Synchronous Binary Counter:

 Figure 8-11 shows a 2-bit synchronous binary counter. Notice that an arrangement

different from that for the asynchronous counter must be used for the J1 and K1

inputs of FF1.

 HIGH

 FF0 FF1

 J0 Q0 J1 Q1

 C C

 K0 K1 Q1

CLK

- Figure 8-11: A 2-bit synchronous binary counter

 3 – Bit Synchronous Binary Counter:

 A 3-bit synchronous binary counter is shown in Figure 8-14. We can understand

this counter operation by examining its sequence of states as shown in Table 8 – 3.

 HIGH

 FF0 FF1 Q0Q1 FF2

 J0 Q0 J1 Q1 J2 Q2

 C C C

 K0 K1 K2

CLK

- Figure 8-14: A 3-bit synchronous binary counter

 State Table 8-3:

- State sequence for a 3 – bit binary counter

Clock Pulse Q2 Q1 Q0

Initially 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

8 (recycles) 0 0 0

cslearnerr.com

37

 4 – Bit Synchronous Binary Counter:

 Figure 8 – 16 shows a 4 – bit sychronous binary counter. This particular counter is

implemented with negative edge – triggered flip – flops.

 HIGH

 FF0 FF1 Q0Q1 FF2 Q0Q1Q2 FF3

 J0 Q0 J1 Q1 G1 J2 Q2 G2 J3 Q3

 C C C C

 K0 K1 K2 K3

CLK

- Figure 8-16: A 4-bit synchronous binary counter

Discover comprehensive notes for BSCS, BSIT and BSAI courses conveniently gathered on our user-friendly website, www.cslearnerr.com

38

Week No. 14: BASIC SHIFT REGISTER FUNCTIONS

Register:

 A register is a digital circuit with two basic functions: Data Storage and Data Movement.

 A register can consist of one or more Flip – Flops used to store and shift data.

Shift Registers:

 A register capable of shifting its binary information either to the right or to the left, is

called a shift register.

 The logical configuration of a shift register consists of a chain of flip – flops connected,

with the output of one flip – flop connected to the input of the next flip – flop.

 All flip – flops receive a common clock pulse which causes the shift from one stage to

the next.

 The following figure shows the concept of storing a 1 or 0 in a D flip – flop. A 1 is

applied to the data input and a clock pulse is applied that stores the 1 by setting the flip –

flop. When the 1 on the input is removed, the flip – flop remains in the SET state, thereby

storing the 1. A similar procedure applies to the storage of a 0 by resetting the flip – flop.

 1 D Q 1

 When a 1 is on D, Q becomes a 1 at the triggering edge of CLK

CLK C or remains a 1 if already in the SET state.

 0 D Q 0

 When a 0 is on D, Q becomes a 0 at the triggering edge of CLK

CLK C or remains a 0 if already in the RESET state.

 The storage capacity of a register is the total number of bits (1s & 0s) of digital data.

 Each stage (flip – flop) in a shift register represents one bit of storage capacity; therefore,

the number of stages in a register determines its capacity.

 The shift capability of a register permits the movement of data from stage to stage within

application of clock pulses.

Serial In/Serial Out Shift Registers:

 The serial in/serial out shift register accepts data serially – that is, one bit at a time on a

single line means one bit at a time is transferred.

 It produces the stored information on its output also in serial form.

 Let’s first look at the serial entry of data into a typical shift register.

 The following figure shows a 4 – bit device implemented with D flip – flops with four

stages, this register can store up to four bits of data.

 FF0 FF1 FF2 FF3

 Serial data input D Q0 D Q1 D Q2 D Q3 Serial data output

 C C C C

 Q3 Serial data output

CLK

39

 The following figure illustrates entry of the four bits 1010 into the register, beginning

with the least significant bit. The register is initially clear.

 The 0 is put onto the data input line, making D = 0 for FF0. When the first clock pulse is

applied, FF0 is reset, thus storing the 0.

 Next the second bit, which is a 1, is applied to the data input, making D = 1 for FF0 and

D = 0 for FF1 because the D input of FF1 is connected to the Q0 output. When the

second clock pulse occurs, the 1 on the data input is shifted into FF0, causing FF0 to set

and the 0 that was in FF0 is shifted into FF1.

 FF0 FF1 FF2 FF3

 Data input D 0 D 0 D 0 D 0 Q3

 C C C C Register initially CLEAR

CLK

 FF0 FF1 FF2 FF3

 1st data bit=0 D 0 D 0 D 0 D 0 Q3

 (LSB)

 C C C C After CLK1

 CLK1

 FF0 FF1 FF2 FF3

 2st data bit=1 D 1 D 0 D 0 D 0 Q3

 C C C C After CLK2

 CLK2

 FF0 FF1 FF2 FF3

 3rd data bit=0 D 0 D 1 D 0 D 0 Q3

 C C C C After CLK3

 CLK3

 FF0 FF1 FF2 FF3

 4th data bit=1 D 1 D 0 D 1 D 0 Q3

(MSB)

 C C C C After CLK4, the 4-bit number

 is completely stored in register.

 CLK4

 The third bit, a 0 is now put onto the data input line, and a clock pulse is applied. The 0 is

entered into FF0, the 1 stored in FF0 is shifted into FF1, and the 0 stored in FF1 is shifted

into FF2.

40

 The last bit, a 1 is now applied to the data input, and a clock pulse is applied. This time

the 1 is entered into FF0, the 0 stored in FF0 is shifted into FF1, the 1stored in FF1 is

shifted into FF2, and the 0 stored in FF2 is shifted into FF3. This completes the serial

entry of the four bits into the shift register.

 If you want to get the data out of the register, the bits must be shifted out serially and

taken off Q3 output as showing in the following figure:

 Four bits (1010) being serially shifted out of the register and replaced by all zeros.

 FF0 FF1 FF2 FF3

 0 D 1 D 0 D 1 D 0 Q3 1st data bit (LSB)

 C C C C After CLK4,

 register contains 1010.

CLK

 FF0 FF1 FF2 FF3

 0 D 0 D 1 D 0 D 1 Q3 2nd data bit

 C C C C After CLK5

 CLK5

 FF0 FF1 FF2 FF3

 0 D 0 D 0 D 1 D 0 Q3 3rd data bit

 C C C C After CLK6

 CLK6

 FF0 FF1 FF2 FF3

 0 D 0 D 0 D 0 D 1 Q3 4th data bit (MSB)

 C C C C After CLK7

 CLK7

 FF0 FF1 FF2 FF3

 0 D 0 D 0 D 0 D 0 Q3

 C C C C After CLK8, register is CLEAR

 CLK8

 After CLK4 in the data entry operation, the LSB, 0, appears on Q3 output. When clock

pulse CLK5 is applied, the second bit appears on the Q3 output. Clock pulse CLK6 shifts

the third bit to the output, and CLK7 shifts the fourth bit to the output. While the original

four bits are being shifted out, more bits can be shifted in. All zeros are shown being

shifted in.

41

Serial In/Parallel Out Shift Registers:

 Data bits are entered serially (Least significant bit first) into a serial in/parallel out shift

register.

 In the parallel output register, the output of each stage is available.

 Once the data are stored, each bit appears on its respective output line, and all bits are

available simultaneously, rather than on a bit – by – bit basis as with the serial output.

 The following figure shows a 4 – bit serial in/parallel out shift register and its logic block

symbol.

 FF0 FF1 FF2 FF3

 Serial Data input D D D D

 C C C C

CLK

 Q0 Q1 Q2 Q3

 Parallel Data Output

(a) 4 – Bit Serial In/Parallel Out Shift Register.

 SRG4

Data input D

 SRG4 = 4 – bit Shift Register

 CLK C

 Q0 Q1 Q2 Q3

(b) 4 – Bit Serial In/Parallel Out Shift Register Logic Block Symbol.

cslearnerr.com

42

Week No. 15: PARALLEL IN/SERIAL OUT SHIFT REGISTERS

Parallel In/Serial Out Shift Registers
 For register with parallel data inputs, the bits are entered simultaneously into their

respective states on parallel lines rather than on a bit – by – bit basis on one line as with

serial data inputs. Once the data are completely stored in the register then that stored data

appears on its output in serial form.

 For parallel data, multiple bits are transferred at one time.

 The following figure shows a 4 – bit parallel in/serial shift register and a typical logic

symbol.

 There are four data – input lines D0, D1, D2, and D3, and a SHIFT/LOAD input, which

allows four bits of data to load in parallel into the register.

 When SHIFT/LOAD is LOW, gates G1 through G4 are enabled, allowing each data bit to

be applied to the D input of its respective flip – flop.

 When a clock pulse is applied, the flip – flops with D = 1 will set and those with D = 0

will reset, thereby storing all four bits simultaneously.

 D0 D1 D2 D3

Shift/Load

 G1 G5 G2 G6 G3 G7 G4

 FF0 FF1 FF2 FF3

 D Q0 D Q1 D Q2 D Q3

 Serial Data Out

 C C C C

CLK

(a) Logic diagram

 D0 D1 D2 D3

SHIFT/LOAD SRG4

 Serial Data Out

 CLK C

 SRG4 = 4 – Bit Shift Register

(b) Logic Symbol

 SHIFT/LOAD: When SHIFT/LOAD is HIGH, the data are shifted right one bit per

clock pulse. When SHIFT/LOAD is LOW, the data on the parallel inputs are loaded into

the register.

 When SHIFT/LOAD is HIGH, gates G1 through G4 are disabled and gates G5 through

G7 are enabled, allowing the data bits to shift right from one stage to the next.

 The OR gates allow either the normal shifting operation or the parallel data entry

operation, depending on which AND gates are enalbed by the level on the SHIFT/LOAD

input.

 Note that FF0 has a single AND to disable the parallel input, D0. It does not require an

AND/OR arrangement because there is no serial data in.

cslearnerr.com

43

Parallel In/Parallel Out Shift Registers:

 For a register with parallel data inputs, the bits are entered simultaneously into their

respective stages on parallel lines. Once the data are stored, each bit appears on its

respective output lines and all bits are available simultaneously.

 The following figure shows a parallel In/Parallel Out Register:

 Parallel Data Inputs

 D0 D1 D2 D3

 FF0 FF1 FF2 FF3

 Data input D D D D

 C C C C

CLK

 Q0 Q1 Q2 Q3

 Parallel Data Outputs

(a) Logic diagram

 D0 D1 D2 D3

 SRG4

 CLK C

 Q0 Q1 Q2 Q3

(b) Logic Symbol

44

Week No. 16: MICROPROCESSOR AND MEMORY/STORAGE DEVICES

Memory:

 Memory is the portion of a computer or other system that stores binary data. In a

computer, memory is accessed millions of times per second, so the requirement for speed

and accuracy is paramount. Very fast semiconductor memory is available today in

modules with over 4 GB of capacity.

 The two major categories of semiconductor memories are the RAM and the ROM:

 RAM (random-access memory) is a type of memory in which all addresses are

accessible in an equal amount of time and can be selected in any order for a read or

write operation. All RAMs have both read and write capability. Because RAMs lose

stored data when the power is turned off, they are volatile memories.

 ROM (read-only memory) is a type of memory in which data are stored

permanently or semi permanently. Data can be read from a ROM, but there is no

write operation as in the RAM. The ROM, like the RAM, is a random-access

memory but the term RAM traditionally means a random-access read/write

memory. Because ROMs retain stored data even if power is turned off, they are

nonvolatile memories.

The Random – Access Memory (RAM):

 A RAM is a read/write memory in which data can be written into or read from any

selected address in any sequence.

 When a data unit is written into a given address in the RAM, the data unit previously

stored at that address is replaced by the new data unit.

 When a data unit is read from a given address in the RAM, the data unit remains stored

and is not erased by the read operation. This nondestructive read operation can be viewed

as copying the content of an address while leaving the content intact.

 A RAM is typically used for short-term data storage because it cannot retain stored data

when power is turned off.

 The two major categories of RAM are the static RAM (SRAM) and the dynamic

RAM (DRAM):

 SRAMs generally use latches as storage elements and can therefore store data

indefinitely as long as DC power is applied.

 DRAMs use capacitors as storage elements and cannot retain data very long

without the capacitors being recharged by a process called refreshing.

 Both SRAMs and DRAMs will lose stored data when DC power is removed and,

therefore, are classified as volatile memories.

 Data can be read much faster from SRAMs than from DRAMs. However, DRAMs

can store much more data than SRAMs for a given physical size and cost because

the DRAM cell is much simpler, and more cells can be crammed into a given chip

area than in the SRAM.

 The basic types of SRAM are the asynchronous SRAM and the synchronous SRAM

with a burst feature.

 The basic types of DRAM are the Fast Page Mode DRAM (FPM DRAM), the

Extended Data Out DRAM (EDO DRAM), the Burst EDO DRAM (BEDO

DRAM), and the synchronous DRAM (SDRAM).

45

 Cache Memory: One of the major applications of SRAMs is in cache memories in

computers. Cache memory is a relatively small, high-speed memory that stores the

most recently used instructions or data from the larger but slower main memory.

Cache memory can also use dynamic RAM (DRAM). Typically, SRAM is several

times faster than DRAM, Overall, a cache memory gets stored information to the

microprocessor much faster than if only high-capacity DRAM is used. Cache

memory is basically a cost-effective method of improving system performance

without having to resort to the expense of making all of the memory faster. The

concept of cache memory is based on the idea that computer programs tend to get

instructions or data from one area of main memory before moving to another area.

The Read-Only Memory (ROM):

 A ROM contains permanently or semi permanently stored data, which can be read from

the memory but either cannot be changed at all or cannot be changed without specialized

equipment.

 A ROM stores data that are used repeatedly in system applications, such as tables,

conversions, or programmed instructions for system initialization and operation.

 ROMs retain stored data when the power is off and are therefore nonvolatile memories.

 The major categories of semiconductor ROMs:

 The Mask ROM is the type in which the data are permanently stored in the memory

during the manufacturing process.

 The PROM, or programmable ROM, is the type in which the data are electrically

stored by the user with the aid of specialized equipment. Both the mask ROM and

the PROM can be of either MOS or bipolar technology.

 The EPROM, or erasable PROM, is strictly a MOS device.

 The UV EPROM is electrically programmable by the user but the stored data must

be erased by exposure to ultraviolet light over a period of several minutes.

 The electrically erasable PROM (EEPROM or E2PROM) can be erased in a few

milliseconds.

The Flash Memory:

 The ideal memory has high storage capacity, non-volatility, in-system read and write

capability, comparatively fast operation, and cost effectiveness. The traditional memory

technologies such as ROM, PROM, EPROM, EEPROM, SRAM, and DRAM

individually exhibit one or more of these characteristics. Flash memory has all of the

desired characteristics.

 Flash memories are high-density read/write memories (high density translates into large

bit storage capacity) that are non-volatile, which means that data can be stored

indefinitely without power. They are sometimes used in place of floppy or small-capacity

hard disk drives in portable computers.

cslearnerr.com

46

Magnetic and Optical Storage:

 These storage media are important, particularly in computer applications, where they are

used for mass nonvolatile storage of data and programs.

 Magnetic Storage:

 Magnetic Hard Disks: Computers use hard disks as the internal mass storage

media.

 Hard disks are rigid “platters” made of aluminum alloy or a mixture of glass and

ceramic covered with a magnetic coating.

 Hard disk drives mainly come in two diameter sizes, 5.25 inch and 3.5 inch

although 2.5 inch and 1.75 inch are also available.

 A heard disk drive is hermetically sealed to keep the disks dust-free.

 Floppy Disks: the floppy disk is an older technology and derives its name because

it is made of a flexible polyester material with a magnetic coating on both sides.

 The early floppy disks were 5.25 inches in diameter and were packaged in a semi

flexible jacket.

 Floppy disks or diskettes are 3.5 inches in diameter and are encased in a rigid

plastic jacket.

 Optical Storage:

 CD – ROM: The basic Compact Disk-Read-Only Memory is a 120 mm

diameter disk with a sandwich of three coatings: a polycarbonate plastic on the

bottom, a thin aluminum sheet for reflectivity, and a top coating of lacquer for

protection.

 The CD-ROM disk is formatted in a single spiral track with sequential 2 kb sectors

and has a capacity of 680 MB. Data are prerecorded at the factory in the form of

minute indentations called pits and the flat area surrounding the pits called lands.

The pits are stamped into the plastic layer and cannot be erased.

 WORM: Write Once/Read Many (WORM) is a type of optical storage that can

be written onto one time after which the data cannot be erased but can be read many

times.

 To write data, a low-power laser is used to burn microscopic pits on the disk

surface.

 1s and 0s are represented by the burned and non-burned areas.

 CD-R: This is essentially a type of WORM. The difference is that the CD-

Recordable allows multiple write sessions to different areas of the disk.

 The CD-R disk has a spiral track like the CD-ROM, but instead of mechanically

pressing indentations on the disk to represent data, the CD-R uses a laser to burn

microscopic spots into an organic dye surface.

 CD-RW: The CD-Rewritable disk can be used to read and write data. Instead of

the dye based recording layer in the CD-R, the CD-RW commonly uses a

crystalline compound with a special property.

 DVD-ROM: Originally DVD was an abbreviation for Digital Video Disk but

eventually came to represent Digital Versatile Disk, Like the CD-ROM, DVD-

ROM data are process stored on the disk. However, the pit size is smaller than for

the CD-ROM, allowing more data to be stored on a track.

 The major difference between CD-ROM and DVD-ROM are that the CD is single-

sided, while the DVD has data on both sides.

47

Introduction to Microprocessor and Microcomputer:

 Microprocessor:

 The microprocessor is a digital integrated circuit that can be programmed with a

series of instructions to perform various operations on data.

 A microprocessor is the CPU of a computer. It can do arithmetic and logic

operations, move data from one place to another, and make decisions based on

certain instructions.

 A microprocessor consists of several units, each designed for a specific job. The

specific units, their design and organization, are called the architecture.

 The architecture determines the instruction set and the process for executing

those instructions.

 Four basic units that are common to all microprocessors are the arithmetic logic

unit (ALU), the instructions decoder, the register array, and the control unit.

 Microcomputer:

 A typical microcomputer system consists of a microprocessor plus memory, and

I/O interface.

 The various components that form the system are linked through buses that

transfer instructions, data, addresses, and control information among the IC

components.

 The following Figure shows the block diagram of a microcomputer system:

 Typically, the microcomputer has a single microprocessor. If many processors

are included, then we have a multiprocessor system – which is a valid

possibility.

 A number of RAM and ROM chips are combined to form a given memory size.

 The interface units communicate with various external devices through the I/O

bus.

 At any given time, the microprocessor selects one of the units through its

address bus.

 Data are transferred to and from the selected unit and the microprocessor via the

data bus.

 Control information is usually transferred through individual lines, each

specifying a particular control function.

 Microprocessor

 RAM

 ROM

 Interface

 units

 Address Control I/O Data

 bus lines bus bus

cslearnerr.com

