
Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

1

Discipline: BS (IT) - 4th Semester
Subject: Database Systems [NEW Course]
Course Code: IT – 411
Final Term Notes: From Week No. 07 – 16
Prepared by: ARSHAD IQBAL, Lecturer (CS/IT), ICS/IT - FMCS,

The University of Agriculture, Peshawar

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

2

Week No. 07: Entity Relationship Model

Entity Relationship Model (E-R Model):

An Entity Relationship Model (E-R Model) is a detailed, logical representation of the data
for an organization or for business area. An E – R Diagram is the logical design of the databases.

E-R Model is expressed in terms of entities in the business environment, the relationship
(or association) among those entities, and the attributes of both the entities and their relationship.
ER Model is used to show the Conceptual Schema of an Organisation.

Entity Relationship Diagram (ERD) is a Data Modeling Technique used in Databases
and Software Engineering to produce a Conceptual Data Model of an information system.
So, ERDs illustrate the logical structure of databases.

Constructs/Elements in E-R Data Model:
The major activity is identifying entities, attributes, and their relationships to construct model using
the Entity Relationship Diagram.

The E-R Data Model supports the following major constructs (concepts)/Elements:

Entity Table:

- Entity Type
- Entity Instance
- Entity Set

Attribute Column:
- Attribute Domain

Relationships line:
- Association

Entity:
An entity is a person, place, thing or event for which data is collected and maintained. For example:

- Person: TEACHER, DOCTOR, PLAYER
- Place: COUNTRY, CITY
- Object: VEHJICLE, TOY, FURNITURE
- Event: PURCHASE, ADMISSION, REGISTRATION
- Concept: ACCOUNT, PROGRAMING

Represented by a rectangle, with its name on the top.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

3

Attributes:
The characteristics of an entity are called Attributes or Properties. For example: A Student Entity
Type has attributes like Stuent_id, name, address, phone_number and major etc.

Relationship:
A Relationship is a logical connection between different Entity Types. The entities that
participate in a Relationship are called participants. Relationship represents an association
between two or more entities.

An example of a Relationship would be:
- Employees are assigned to Projects
- Teachers teach the Students
- Projects have Subtasks
- Departments manage one or more Projects

Relationships are the connections and interactions between the Entities Instances
e.g., DEPT_EMP associates Department and Employee.

Symbol:

Symbol: For Relationship between Strong Entity Type and weak Entity Type.

Another example: A student in a college has many courses and the student is supposed to complete
the courses. This creates a many to many Relationships between STUDENT and COURSE.

Relationship

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

4

Entity Relationship Diagrams (ERDs):
E-R Diagram is a graphical representation of E-R model using a set of standard symbols.

Example 01: Draw an ER Diagram for each of the following situations:

1. A company has a number of employees. Each employee may be assigned to one or more

projects or may not be assigned to a project. A project must have at least one employee assigned
and may have several employees assigned.

2. A hospital patient has a patient history. Each patient has one or more history records. Each

patient history record belongs to exactly one patient.

3. An account can be charged against many projects through it may not be charged against any.

A project must have at least one accounts charged against it. It may also have many accounts
charged against it.

4. An employee must manage exactly one department. A department may or may not have one
employee to manage it.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

5

Example 02: Draw an ER Diagram for each of the following situations:

1. A department employs many persons, means a department employee one or many persons.
A person is employed by one department at most, means a person may be employed by one
department or he may not be employed at all.

2. A manager manages one department at most, means a manager may manage one department

or he manages no department. A department is managed by one manager at most, means a
department is managed by one manager or it is not managed by any manager.

3. A team consists of many players, means a team employs at least one player or many players.

A player plays for one team, means a player plays for exactly one team.

4. A lecturer teaches one course at most, means a lecturer teaches one course or he does not

teach any course. A course is taught by one lecturer, means a course is taught by exactly one
lecturer.

5. A purchase order may be for many products, means a purchase order contains one or many

products. A product may appear on many purchase orders, means a product may appear in
many orders and it may not appear in any order at all.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

6

Example 03: Draw an ER Diagram for the following Scenario:

In a school, a student may be assigned to one or more posts like perfect, monitor or chairman.
A post must be assigned to exactly one student. A student is identified with student ID, name,
address and date of birth. A post is identified with post ID and name.

Example 04: Draw an ER Diagram for the following Scenario:

In a school, a teacher teaches one or more classes. Each class is taught by one or more teachers. A
teacher is identified with teachers ID and name. A class is identified with class code and location.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

7

Example 05: Draw an ER Diagram for the following Scenario:

A company has a number of employees. The attributes of EMPLOYEE include Employee_ID
(Identifier), Name, Address and Birthdate. The company also has several projects. The attributes
of PROJECT are Project_ID (Identifier), Project_Name and Start_Date. Each employee may be
assigned to one or more projects or may not be assigned to a project. A project must have at least
one employee assigned and may have any number of employees assigned. An employee billing
rate may vary by project and that company wishes to record the applicable billing rate
(Billing_Rate) for each employee when assigned to a particular project.

Example 06: Draw an ER Diagram for the following Scenario:

A college course may have one or more scheduled sections or may not have a scheduled section.
Attributes of COURSE include Course_ID, Course_ Name, and Units. Attributes of SECTION
include Section_Number and Semester_ID. Semester_ID is composed of two parts: Semester and
Year. Each SECTION has scheduled by exactly one COURSE.
Note: COURSE is a Strong Entity Type and SECTION is a Weak Entity Type.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

8

Example 07: Draw an ER Diagram for the following Scenario:

A university has a large number of courses in a catalog. Attributes of COURSE include
Course_Number (identifier), Course_Name and Units. Each course may have one or more courses
as prerequisites or may have no prerequisites. Similarly, a particular course may be a prerequisite
for any number of courses or may not be prerequisite for any other course.

Example 08: Draw an ER Diagram for the following Scenario:

A laboratory has several chemists who work on one or more projects. Chemists also may use
certain kinds of equipment on each project. Attributes of CHEMIST include Employee_ID
(identifier), Name and Phone_No. Attributes of PROJECT include Project_ID (identifier),
and Start_Date. Attributes of EQUIPMENT include Serial_No and Cost. The organization wishes
to record Assign_Date i.e., the date when an equipment item was assigned to a particular chemist
working on a specific project. A chemist must be assigned to at least one project and one equipment
item. An equipment item need not be assigned either a chemist or a project and also a given project
need not be assigned either a chemist or an equipment item.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

9

Example 09: Draw an ER Diagram for the following Scenario:

A hospital has a large number of registered physicians. Attributes of PHYSICIAN include
Physician_ID (identifier) and Specialty. Patients are admitted to the hospital by physicians.
Attributes of PATIENT include Patient_ID (identifier) and Patient_Name. any admitted patient
must have exactly one admitting physician. A physician may admit any number of patients. Once
admitted, a given patient must be treated by at least one physician. A particular physician may
treat any number of patients or may not treat any patients. Whenever a patient is treated by
a physician, the hospital records the details of the treatment (Treatment_Detail). Components of
Treatment_Detail include Date, Time, and Results.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

10

Week No. 08 & 09: Normalization

Normalization:
Normalization is basically a process of efficiently organizing data in a database. There are two
goals of the Normalization process:

 Eliminate Redundant Data (for example, storing the same data in more than one table) and
 Ensure Data Dependencies (only storing related data in a table).

Both of these are worthy goals as they reduce the amount of space a database consumes and
ensure that data is logically stored.

Normalization is the process of decomposing unsatisfactory "bad" relations by breaking up
their attributes into smaller relations.

Normalization is a database design technique which organizes tables in a manner that reduces
redundancy and dependency of data. It divides larger tables to smaller tables and links them
using relationships.

Steps in Normalization:

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

11

Functional Dependency:
Normalization is based on the concept of Functional Dependency. A Functional Dependency
is a relationship between attributes. It means that if the value of one attribute is known, it is
possible to obtain the value of another attribute. Suppose there is a relation STUDENT with
following fields:

STUDENT (RegistrationNo, StudentName, Class, Email)

If value of RegistrationNo is known, it is possible to obtain the value of StudentName. It means
that StudentName is functionally dependent on RegistrationNo.
Functional Dependency is written as follows:

RegistrationNo StudentName

The above expression is read as “RegistrationNo determines StudentName” or “StudentName
is functionally dependent on RegistrationNo”. The attribute on the left side is called
determinant.

A constraint between two attributes in which the value of one attribute is determined by
the value of another attribute. i.e. For any relation R, attribute B is functionally dependent on
attribute A, if for every valid instance of A, that value of A uniquely determines the value of B
and is represented as A B.

An attribute may be functionally dependent on a single attribute or a collection of attributes
such as:

Std_id, Course_Title Date Completed

Other examples:
SSN Name, address, DOB

VIN Make, Model, Color

ISBN Title, Author, Publisher

Determinant: An attribute in a relation that uniquely determine the value of another attribute.
The attribute(s) on the left-hand side of the arrow is/are called Determinant e.g., in the above
example.
 Std_id, Course_Title
 SSN
 VIN
 ISBN

Full Functional Dependency: A dependency in which all the non key attributes are
fully functionally dependent on the Primary Key.

Partial Dependency: A Functional Dependency in which one or more non key attributes are
functionally dependent on a part (but not all) of the Primary Key. For Partial Dependency,
a Composite Key must be there. It could be possible when there is a Composite Key.

Transitive Dependency: A Functional Dependency in which one attribute functionally
determines a second, which functionally determines a third. Transitive Dependency occurs
when one non-key attribute determines another non-key attribute.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

12

First Normal Form (1NF):

A relation is in First Normal form if and only if every attribute is single valued for each tuple.
This means that each attribute in each row, or each cell of the table, contains only one value.
No repeating groups are allowed. A repeating group is a set of one or more data items that
may occur a variable number of times in a tuple. The value in each attribute should be atomic
and every tuple should be unique. There is no multivalued (repeating groups) in the Relation.

Example No. 01: There is a Relation of Student.

STD (stId, stName, stAdr, prName, bkId)

Primary Key

stId stName stAdr prName bkId
S1020 Sohail Dar I-8 Islamabad MCS B00129
S1038 Shoaib Ali G-6 Islamabad BCS B00327

S1015 Tahira Ejaz L Rukh Wah MCS
B08945,
B06352

S1018 Arif Zia E-8, Islamabad. BIT B08474

Now in this table there is no unique value for every tuple, like for S1015 there are
two values for bookId. So, to bring it in the First Normal form.

Primary Key

stId stName stAdr prName bkId
S1020 Sohail Dar I-8 Islamabad MCS B00129
S1038 Shoaib Ali G-6, Islamabad BCS B00327
S1015 Tahira Ejaz L Rukh Wah MCS B08945
S1015 Tahira Ejaz L Rukh Wah MCS B06352
S1018 Arif Zia E-8, Islamabad. BIT B08474

Now this table is in First Normal Form and for every tuple there is a unique value.

Example No. 02:

Unnormalized Form (UNF):
A relation containing one or more repeating groups.

Primary Key

Emp_Id Name Dept_Name Salary Course_Title Date_Completed

100 Margaret Simpson Marketing 48,000
SPSS
Surveys

6/1/1999
10/1/1998

140 Alan Beeton Accounting 52,000 Tax Acc 12/1/1998

110 Chris Lucero MSD 43,000
SPSS
C++

1/1/1999
2/1/1999

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

13

First Normal Form (1NF):

In First Normal Form, there is no multi-valued attributes i.e., intersection of each row and
column contain one and only one value. Every attribute value is atomic (or indivisible).

Primary Key

Emp_Id Name Dept_Name Salary Course_Title Date_Completed

100 Margaret Simpson Marketing 48,000 SPSS 6/1/1999
100 Margaret Simpson Marketing 48,000 Surveys 10/1/1998

140 Alan Beeton Accounting 52,000 Tax Acc 12/1/1998

110 Chris Lucero MSD 43,000 SPSS 1/1/1999

110 Chris Lucero MSD 43,000 C++ 2/1/1999

Figure: First Normal Form (1NF)

Example No. 03:

Unnormalized Form (UNF):

Primary Key

Accountant
Number

Skill
Number

Skill
Category

Proficiency
Number

Accountant
Name

Accountant
Age

Group
Number

Group
City

Group
Supervisor

21 113 Systems 3 Ali 55 52 ISD Babar

35
113
179
204

Systems
Tax
Audit

5
1
6

Daud 32 44 LHR Ghafoor

50 179 Tax 2 Chohan 40 44 LHR Ghafoor

77
148
179

Consulting
Tax

6
6

Zahid 52 52 ISD Babar

Figure: Un-normalize Relation

The above relation is un-normalized because it contains repeating groups of three attributes:
Skill Number, Skill Category and Proficiency Number. All these fields contain more than one
value. In order to convert this into Normal Form, these repeating groups should be removed.

The following relation is in First Normal Form:

Primary Key

Accountant
Number

Skill
Number

Skill
Category

Proficiency
Number

Accountant
Name

Accountant
Age

Group
Number

Group
City

Group
Supervisor

21 113 Systems 3 Ali 55 52 ISD Babar
35 113 Systems 5 Daud 32 44 LHR Ghafoor
35 179 Tax 1 Daud 32 44 LHR Ghafoor
35 204 Audit 6 Daud 32 44 LHR Ghafoor
50 179 Tax 2 Chohan 40 44 LHR Ghafoor
77 148 Consulting 6 Zahid 52 52 ISD Babar
77 179 Tax 6 Zahid 52 52 ISD Babar

Figure: First Normal Form (1NF)

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

14

Second Normal Form (2NF):
A relation is in Second Normal Form (2NF) if and only if it is in First Normal Form and all the
non key attributes are fully functionally dependent on the whole key. It means that none of
non-key attributes are related to a part of key. Clearly, if a relation is in 1NF and the key
consists of a single attribute, the relation is automatically in 2NF. The concern about 2NF is
when the key is composite.

Second Normal Form (2NF) addresses the concept of removing duplicative data. It removes
subsets of data that apply to multiple rows of a table and place them in separate tables. It creates
relationships between these new tables and their predecessors through the use of Foreign Keys.

Example No. 01: Consider the following Relation.

Primary Key

Accountant
Number

Skill
Number

Skill
Category

Proficiency
Number

Accountant
Name

Accountant
Age

Group
Number

Group
City

Group
Supervisor

21 113 Systems 3 Ali 55 52 ISD Babar
35 113 Systems 5 Daud 32 44 LHR Ghafoor
35 179 Tax 1 Daud 32 44 LHR Ghafoor
35 204 Audit 6 Daud 32 44 LHR Ghafoor
50 179 Tax 2 Chohan 40 44 LHR Ghafoor
77 148 Consulting 6 Zahid 52 52 ISD Babar
77 179 Tax 6 Zahid 52 52 ISD Babar

Figure: First Normal Form (1NF)

The above relation in 1NF has some attributes which are not depending on the whole primary
key. For example, Accountant Name, Accountant Age and group information is determined by
Accountant Number and is not dependent on Skill Number. The following relation can be
created in which all attributes are fully dependent on Primary Key (Accountant Number).

Primary Key

Accountant Number Accountant Name Accountant Age Group Number Group City Group Supervisor

21 Ali 55 52 ISD Babar
35 Daud 32 44 LHR Ghafoor
50 Chohan 40 44 LHR Ghafoor
77 Zahid 52 52 ISD Babar

Figure: Accountant Table in 2NF

Similarly, another relation Skill can be created in which all fields are fully dependent on
the Primary Key as follows:

Primary Key

Skill Number Skill Category

113 Systems
179 Tax
204 Audit
148 Consulting

Figure: Skill Table in 2NF

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

15

The attribute Proficiency in 1NF relation was fully dependent on the whole Primary Key.
The Proficiency requires to know the Accountant Number and Skill Number.
The third relation will be created as follows:

 Primary Key

Accountant Number Skill Number Proficiency Number

21 113 3
 35 113 5
35 179 1
35 204 6
50 179 2
77 148 6
77 179 6

Figure: Proficiency Table in 2NF

There are three relations in Second Normal Form (2NF). The attributes of all relations are
fully dependent on the Primary Keys.

Example No. 02: Consider the following relation.

Here in Student_Project relation that the Prime Key attributes are Stu_ID and Proj_ID.
According to the rule, non-key attributes, i.e., Stu_Name and Proj_Name must be dependent
upon both and not on any of the Prime Key attribute individually. But Stu_Name can be
identified by Stu_ID and Proj_Name can be identified by Proj_ID independently. This is
called Partial Dependency, which is not allowed in Second Normal Form.
Decomposed Student_Project relation into two separate relations.

Student (Stu_ID, Stu_Name, Proj_ID)

Project (Proj_ID, Proj_Name)

Now these two relations/tables are in Second Normal Form.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

16

Example No. 03:
Relation EMPLOYEE is NOT in 2nd Normal Form (Name, Department Name, and Salary is
only dependent on Emp_Id).

Primary Key

Emp_Id Name Dept_Name Salary Course_Title Date_Completed

100 Margaret Simpson Marketing 48,000 SPSS 6/1/1999

100 Margaret Simpson Marketing 48,000 Surveys 10/1/1998

140 Alan Beeton Accounting 52,000 Tax Acc 12/1/1998

110 Chris Lucero MSD 43,000 SPSS 1/1/1999

110 Chris Lucero MSD 43,000 C++ 2/1/1999

Functional Dependencies in EMPLOYEE table:

Decomposed EMPLOYEE relation into two separate relations.

Emp_ID (Emp_Id, Name, Dept_Name, Salary)

Course_Title (Emp_Id, Course_Title, Date_Completed)

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

17

Primary Key

Emp_Id Name Dept_Name Salary

100 Margaret Simpson Marketing 48,000

140 Alan Beeton Accounting 52,000

110 Chris Lucero MSD 43,000

Figure: Emp_ID Table in 2NF

 Primary Key

Emp_Id Course_Title Date_Completed

100 SPSS 6/1/1999

100 Surveys 10/1/1998

140 Tax Acc 12/1/1998

110 SPSS 1/1/1999

110 C++ 2/1/1999

Figure: Course_Title Table in 2NF

Now these two relations/tables are in Second Normal Form.

Third Normal Form:
A relational table is in Third Normal Form (3NF) if it is already in 2NF and if
no non-key attribute is dependent on another non-key attribute. It means that all
non-key attribute is non-transitively dependent upon its Primary Key. There should be
no transitive dependency in a relation. In other words, all non-key attributes are
functionally dependent only upon the Primary Key.

For Third Normal Form, concentrate on relations with one Candidate Key and eliminate
Transitive Dependencies. Transitive Dependency occurs when one non-key attribute
determines another non-key attribute.

Example No. 01:

 Primary Key

Accountant Number Accountant Name Accountant Age Group Number Group City Group Supervisor

21 Ali 55 52 ISD Babar
35 Daud 32 44 LHR Ghafoor
50 Chohan 40 44 LHR Ghafoor
77 Zahid 52 52 ISD Babar

Figure: Accountant Table in 2NF

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

18

The Accountant Table in 2NF contains some attributes which are depending on
non-key attributes. For example, Group City and Group Supervisor are depending on a
non-key field Group Number. A new relation can be created as follows:

Primary Key

Accountant Number Accountant Name Accountant Age Group Number

21 Ali 55 52
35 Daud 32 44
50 Chohan 40 44
77 Zahid 52 52

Figure: Accountant Table in 3NF

The Second Table created from the Accountant Table in 2NF as follows:

Primary Key

Group Number Group City Group Supervisor

52 ISD Babar
44 LHR Ghafoor

Figure: Group Table in 3NF

Both Accountant Table and Group Table contain the attribute Group Number. This attribute
is used to join both tables.

The Skill Table and Proficiency Table both in 2NF contains no attribute, which is depending
on a non-key attribute. They are already in Third Normal Form and will be used without any
further change.

Primary Key

Skill Number Skill Category

113 Systems
179 Tax
204 Audit
148 Consulting

Figure: Skill Table in 3NF

Primary Key

Accountant Number Skill Number Proficiency Number

21 113 3
 35 113 5
35 179 1
35 204 6
50 179 2
77 148 6
77 179 6

Figure: Proficiency Table in 3NF

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

19

Example No. 02:

STUDENT

stId stName stAdr prName prCrdts

S1020 Sohail Dar I-8 Islamabad MCS 64
S1038 Shoaib Ali G-6, Islamabad BCS 132
S1015 Tahira Ejaz L Rukh Wah MCS 64
S1018 Arif Zia E-8, Islamabad BIT 134

Transitive Dependency:

STD (stId, stName, stAdr, prName, prCrdts)

stId stName, stAdr, prName, prCrdts
prName prCrdts

Now here the STUDENT table is in Second Normal Form. As there is no Partial Dependency
of any attributes here. The key is student ID. The problem is of Transitive Dependency in which
a non-key attribute can be determined by a non-key attribute. Like here the program credits
can be determined by program name, which is not in 3NF.
Decomposed STUDENT relation into two separate relations.

STD (stId, stName, stAdr, prName)

PROGRAM (prName, prCrdts)

stId stName stAdr prName

S1020 Sohail Dar I-8 Islamabad MCS
S1038 Shoaib Ali G-6, Islamabad BCS
S1015 Tahira Ejaz L Rukh Wah MCS
S1018 Arif Zia E-8, Islamabad BIT

Figure: STD Table in 3NF

prName prCrdts

MCS 64
BCS 132
MCS 64
BIT 134

Figure: Program Table in 3NF

Now these two relations/tables are in Third Normal Form.

Example No. 03:

In the above Student_detail relation, Stu_ID is the key and only Prime Key attribute.
City can be identified by Zip. Zip and City both are non-key attributes.
so there exists Transitive Dependency.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

20

Student_Detail (Stu_ID, Stu_Name, City, Zip)

Stu_ID Stu_Name, Zip

Zip City

To bring this relation into Third Normal Form, decomposed the relation into two
relations as follows:

Student_Detail (Stu_Name, Zip)

ZipCodes (Zip, City)

Now these two relations/tables are in Third Normal Form.

Example No. 04:

Sales relation is NOT in 3nd Normal Form (Region is depend on Salesperson).

Cust_ID Name Salesperson Region
8023 Anderson Smith South
9167 Bancroft Hicks West
7924 Hobbs Smith South
6837 Tucker Hernandez East
8596 Eckersley Hicks West
7018 Arnold Faulb North

Figure: SALES relation

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

21

Removing a Transitive Dependency:
Decomposing the SALES relation into the following two relations.

Cust_ID Name Salesperson
8023 Anderson Smith
9167 Bancroft Hicks
7924 Hobbs Smith
6837 Tucker Hernandez
8596 Eckersley Hicks
7018 Arnold Faulb

Figure: SALES1 relation

Salesperson Region

Smith South
Hicks West
Hernandez East
Faulb North

Figure: SPERSON relation

Boyce - Codd Normal Form:
A relation is in Boyce-Codd Normal Form if and only if every determinant is
a Candidate Key. It can be checked by identifying all determinants and then making sure that
all these determinants are Candidate Keys. BCNF is a stronger form of Third Normal Form.
A relation in BCNF is also in Third Normal Form. But a relation in 3NF may not be in BCNF.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

22

Example No. 01:

SID Major Advisor GPA

1 DB Abid 3.5

2 C++ Arshad sb 3.6

Figure: Student relation in 3rd form.

The above STUDENT relation satisfies 2nd and 3rd form of Normalization because there are no
non-key attributes that are dependent on a subset of the Primary Key and also there are no
transitive dependencies but not in BCNF because every determinant is not a Candidate Key.

In order to convert this relation to BCNF, all functional dependencies must be removed which
have a determinant that is not a Candidate Key.

The result is as follows:

SID Advisor Major GPA

1 Abid DB 3.5

2 Arshad sb C++ 3.6

Figure: Student relation in BCNF (Partial Dependency occurs).

But here Partial Dependency occurs between major and advisor.

SID Major GPA

1 DB 3.5

2 C++ 3.6

Figure: Student relation in BCNF.

Major Advisor
DB Abid

C++ Arshad sb
Figure: Major relation in BCNF.

Example No. 02:

Primary Key

ProjectID PartID Quantity Used PartName

101 P01 20 CD-R
112 P05 6 Zip disk
194 P01 12 CD-R
194 P02 1 Box floppy disks
194 P05 3 Zip disk

Figure: Project and Parts relation

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

23

There are following dependencies:

(ProjectID, PartID) QtyUsed

PartID PartName

This relation satisfies 2NF because there are no non-key attributes that are dependent on
a subset of the Primary Key. PartName is not a non-key attribute, it is part of
a Candidate Key. Therefore, this relation is in 2NF.

There are no transitive dependencies so the relation is in 3NF. PartID and PartName are
ignored by 3NF rule because they are both Key Attributes.

In order to convert this relation to BCNF, all functional dependencies must be removed which
have a determinant that is not a Candidate Key.

The result is as follows:

Primary Key

ProjectID PartID Quantity Used PartName

101 P01 20 CD-R
112 P05 6 Zip disk
194 P01 12 CD-R
194 P02 1 Box floppy disks
194 P05 3 Zip disk

Figure: Project and Parts relation in BCNF (Partial Dependency occurs).

But here Partial Dependency occurs between PartID and PartName.

Primary Key

PartID PartName
P01 CD-R
P02 Box floppy disks
P05 Zip disk

Figure: Parts relation in BCNF

Primary Key

ProjectID PartID Quantity Used

101 P01 20
112 P05 6
194 P01 12
194 P02 1
194 P05 3

Figure: Project relation in BCNF

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

24

Transforming of ER-Diagram to Relations:
ER Model represents different things as entities. The connections among different entities are
represented by relationships. These entities and relationship can be transformed into relational
model. This model can used to design the database.

Converting Regular (Strong) Entities into Relations:
The process of converting entities into relations is very simple. In this process, the name of entity
becomes the name of relation and attributes of entity becomes the fields of relation.

Example:

Figure: STUDENT Entity

Student_ID Name Address Phone_No Major

Figure: STUDENT Entity

Converting Composite Attributes:
If an entity contains composite attributes, each part of the attribute is represented by
a separate field in the relation.

Example:

Figure: EMPLOYEE Entity

Employee_ID Name Birthdate Street City Country

Figure: EMPLOYEE Relation

Multi-valued Attribute:
The attribute is represented in a separate relation with a Foreign Key taken from the
Superior Entity if an entity contains Multi-valued Attribute.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

25

Example:

Figure: EMPLOYEE Entity with multi-valued attributes

Employee_ID Name Birthdate Street City Country

Figure: EMPLOYEE Relation

Employee_ID Skills

Figure: SKILLS Relation

The second relation SKILLS is using Employee_ID and Skill as Composite Key.

Converting Weak Entities into Relation:
A Weak Entity does not exist independently. It depends on the existence of another entity known
as Identifying Owner. When entities are converted into relations, first of all a relation for the
identifying owner is created. A separate relation is created for each Weak Entity and attributes
of Weak Entity become the fields of the relation. The Weak Entity relation is connected with
the Identifying Relation. The Primary Key of Identifying Relation is used as Foreign Key in
the Weak Entity relation.

Example:

Figure: Weak Entity SECTION

Course_ID Course_Name Units

Section_Number Course_ID Semester Year

Figure: COURSE and SECTION relations

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

26

Converting Binary Relationships into Relations:
The process of representing Relationships depends upon two things:

1. Degree of Relationship
2. Cardinality of Relationship

Binary One-to-One Relationship:
One-to-One Relationship of ER Model is represented in relations by performing the following two steps:
i. Create a relation for each of the two entity types participating in the relationship.
ii. Include the Primary Key of the first relation as Foreign Key in the second relation.

Example:

Figure: Binary One-to-One Relationship

ChID Name Email

DeptID DeptName ChID

Figure: Relations in Binary One-to-One Relationship

Binary One-to-Many Relationship:
One-to-Many relationship of ER Model is represented in relations by performing the following two steps:
i. Create a relation for each of the two entity types participating in the relationship.
ii. Include the Primary Key of the entity on One-side of the relationship as a Foreign Key in the

relation that is on the Many-side of the relationship.
Example:

Figure: Binary One-to-Many Relationship

Stud_ID Name Date_Birth Address

Post_ID Post_Name Stud_ID

Figure: Relations in Binary One-to-Many Relationship

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

27

Binary Many-to-Many Relationship:
Many-to-Many relationship of ER Model is represented in relations by performing
the following two steps:

i. Create two relations A and B for each of the two entity types participating in the relationship.

ii. Create another relation C (association relation) that contains Primary Keys of relations A and

B as a Foreign Key. These attributes become the Primary of the relation C.

Example:

Figure: Binary Many-to-Many Relationship

Employee_ID Name Address Date_Birth

Employee_ID Project_ID Billing_Rate

Project_ID Project_Name Start_Date

Figure: Relations in Binary Many-to-Many Relationship

Converting Unary Relationships into Relations:
Unary Relationship exists between the instances of same entity types. It is also known as
Recursive Relationship. Unary Many-to-Many relationship of ER Model is represented in
relations by performing the following two steps:

i. Create a relation to represent the entity type.

ii. Add another field as Foreign Key in the same relation that references the Primary Key of the

relation. The Foreign Key must have the same domain as the Primary Key.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

28

Example:

Figure: Unary Many-to-Many Relationship

Course_Number Course_Name Units Prerequiste_Number

Figure: Relation in Unary Many-to-Many Relationship

Converting Ternary Relationships into Relations:
Ternary Relationship exists between the instances of three entity types. Ternary Relationship
of ER Model is represented in relations by performing the following two steps:
i. Create a relation for each entity type participating in the relationship.
ii. Create an associative relation to represent the link between three entities.

The Primary Key of associative relation consists of Primary Keys of three entities in the
relationship. The attributes of associative entity type become attribute of the new relation.

Example:

Figure: Binary Many-to-Many Relationship

Employee_ID Name Phone

Project_ID Start_Date

Employee_ID Project_ID Serial_No Assign_Date

Serial_No Cost

Figure: Relations in Ternary Relationship

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

29

Week No. 10 & 11: Concurrency, Recovery and Integrity

Concurrency:
Concurrency is a situation in which two or more users access the same piece of data at the same
time. In a multi-user environment, concurrency occurs very commonly. In some situations,
the concurrent access may arise to some serious problems. The ability of a database system
which handles simultaneously or a number of transactions by interleaving (inserting/adding)
parts of the actions or the overlapping, this is called Concurrency of the system.

Concurrency Control:
Concurrency Control is important because the simultaneous execution of transactions
over a shared database can create several data integrity and consistency problems.
Concurrency Control is the process of managing simultaneous operations on the database
without having them interfere with one another.

A major objective in developing a database is to enable many users to access shared data
concurrently. Concurrent access is relatively easy if all users are only reading data, as there is
no way that they can interfere with one another.

However, when two or more users are accessing the database simultaneously and at least one
is updating data, there may be interference that can result in inconsistencies. Although two
transactions may be perfectly correct in themselves, the interleaving (inserting something
between two things) of operations sometimes may produce an incorrect result, thus can create
problem in the integrity and consistency of the database.

Concurrency Problems: Different problems that may occur due to Concurrency are as follows:

1. Lost Updates/Lost Update Problem
2. Uncommitted Data/ Uncommitted Dependency (or dirty read) Problem
3. Inconsistent Retrievals/ Inconsistent Analysis Problem.

1. Lost Update Problem:
The problem arises when two or more transactions update the same data concurrently. It occurs
when two or more transactions select the same row and then update the row based on the value
originally selected. Each transaction is unaware of other transactions. The last update
overwrites updates made by the previous transactions. It results in loss of data.

Example No. 01: Suppose there is a stock table that contains three attributes: Product Code,
Description and Quantity. There are two teams of staff, Team A and Team B. Team A is
responsible for stock-in products and Team B is responsible for stock-out products.

Table: Lost Update Problem
Time Team A Stock Table Team B
9:00 Qty = 100

10:30 Retrieve Qty.
Qty = 100.

 Retrieve Qty.
Qty = 100.

10:31 Update Qty = Qty - 90
10:32 Qty = 10
10:33 Update Qty = Qty + 30
10:34 Qty = 130

Result: Team B’s update is lost at 10:33 which is overwritten by Team A’s update.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

30

Example No. 02:
The Lost Update Problem occurs when two concurrent transactions, T1 and T2, are updating
the same data element and one of the updates is lost (overwritten by the other transaction).

Two concurrent transactions update PROD_QOH:

Transaction Operation
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100
T2: Sell 30 units PROD_QOH = PROD_QOH – 30

Transaction T1 is executing concurrently with Transaction T2. T1 is withdrawing £10 from an
account with balance balx, initially £100, and T2 is depositing £100 into the same account.
Transactions T1 and T2 start at nearly the same time, and both read the balance as £100.
T2 increases balx by £100 to £200 and stores the update in the database. Meanwhile, transaction
T1 decrements its copy of balx by £10 to £90 and stores this value in the database, overwriting
the previous update, and thereby ‘losing’ the £100 previously added to the balance.

Result: T2 update is lost which is overwritten by T1 update.

2. Uncommitted Data/ Uncommitted Dependency (or Dirty Read) Problem:
This problem arises when two or more transactions work on the same table. One transaction
retrieves or updates certain part of data before other transaction rollbacks update on the same
data. The uncommitted dependency occurs when a second transaction selects a row that is
being updated by another transaction. The second transaction is reading data that has not been
committed yet and may be changed by the transaction that is updating the row.

Example No. 01:
Suppose the stock table contains a field Quantity with value 100. He following sequence of
actions may result in wrong result.

Table: uncommitted Dependency Problem

Time Team A Stock Table Team B
t1 Qty = 100
t2 Update Qty to 150
t3 Retrieve Qty Qty = 150
t4 Qty = 100 Rollback

In the above example, Team B updates the value of Qty to 150 at t2. Team A then retrieves this
updated value at t3. Team B rollbacks the action while making Qty to 100 again. So, the value
of Qty retrieved by Team A becomes wrong at t4.

Example No. 02:
The phenomenon of uncommitted data occurs when two transactions, T1 and T2, are executed
concurrently and the first transaction (T1) is rolled back after the second transaction (T2) has
already accessed the uncommitted data, thus violating the isolation property of transactions.

Transaction Operation
T1: Purchase 100 units PROD_QOH = PROD_QOH + 100 (Rolled back)
T2: Sell 30 units PROD_QOH = PROD_QOH – 30

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

31

Example No. 03:
The following Table shows how the Uncommitted Data Problem can arise when the
ROLLBACK is completed after T2 has begun its execution.

The Uncommitted Dependency Problem occurs when one transaction is allowed to see
the intermediate results of another transaction before it has committed (performed).

Example No. 04:
Uncommitted Dependency can cause an error, using the same initial value for balance balx
as in the previous example. Here, transaction T4 updates balx to £200, but it aborts
the transaction so that balx should be restored to its original value of £100. However, by this
time transaction T3 has read the new value of balx (£200) and is using this value as the basis of
the £10 reduction, giving a new incorrect balance of £190, instead of £90. The value of balx read
by T3 is called Dirty Data, giving rise to the alternative name, the Dirty Read Problem.

3. Inconsistent Retrievals/ Inconsistent Analysis Problem:

Inconsistent Retrievals occur when a transaction accesses data before and after another
transaction(s) finish working with such data. For example, an Inconsistent Retrieval would
occur if transaction T1 calculated total function over a set of data while another transaction
(T2) was updating the same data. The problem is that the transaction might read some data
before they are changed and other data after they are changed, thereby yielding inconsistent
results. The problem of inconsistent analysis occurs when a transaction reads several values
from the database but a second transaction updates some of them during the execution of the first.

Example No. 01:

Three Accounts: Acc-01: 40 Acc-02: 50 Acc-03: 30 Sum = 0

Time T1 T2

t1
Retrieve Acc-1
Sum = Sum+Acc-01 = 40

-

t2
Retrieve Acc-2
Sum = Sum+Acc-02 = 90

-

t3 - Retrieve Acc-3
t4 - Update Acc-3 = 0
t5 - Retrieve Acc-1
t6 - Update Acc-1 = 50
t7 - Commit

t8
Retrieve Acc-3
Sum = Sum+Acc-03 = 90

-

t9 Commit -

At the time t9, the value of sum is 90, which is wrong.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

32

Example No. 02:
For example, a transaction that is summarizing data in a database (for example, totaling
balances) will obtain inaccurate results if, while it is executing, other transactions are updating
the database. One example can be, in which a summary transaction T6 is executing
concurrently with transaction T5. Transaction T6 is totaling the balances of account x (£100),
account y (£50), and account z (£25). However, in the meantime, transaction T5 has transferred
£10 from balx to balz, so that T6 now has the wrong result.

This problem is avoided by preventing transaction T6 from reading balx and balz until after T5
has completed its updates.

Concurrent Solutions:
The three most common problems in concurrent transaction execution are lost updates,
uncommitted data, and inconsistent retrievals. Concurrency controls can be used to avoid those
problems as by utilizing locking methods, they facilitate the isolation of data items used
concurrently executed transactions, as locks guarantee exclusive use of a data item to a concurrent
transaction.

Resource Locking:
One way to prevent concurrency problems is to lock the shard data. Locking ensures that the
shared data can be used by one user at one time. When a user accesses the data, the second
user has to wait until the first user finishes his work. Suppose there is an item in the database
with a value 100. If two users try to access the item to update it, the locking mechanism will
work as follows:

User1 User2
1. Lock the item.
2. Retrieve item.
3. Reduce item by 10.
4. Update the item.
5. Unlock the item.

1. Lock the item.
2. Retrieve item.
3. Reduce item by 20.
4. Update the item.
5. Unlock the item.

Sequence of Processing by CPU

1. Lock the item for user1.
2. Retrieve item for user1.

3. Lock the item for user2. The item is already locked.

Transaction of User1 So user2 has to wait until user1 unlocks it.

4. Reduce item by 10 for user1.
5. Update the item for user1.
6. Unlock the item for user1. Transaction of User2

7. Lock the item for user2.
8. Retrieve item for user2.
9. Reduce item by 20 for user2.
10. Update the item for user2.
11. Unlock the item for user2.

Figure: Locking Mechanism
After both transactions are completed, the value of item will be 70. The locking mechanism ensures
that if one transaction is in progress, the second transaction has to wait for the completion of first.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

33

Schedules:
The Schedule is responsible for Concurrency Control. The Schedule would try to prevent
conflicts by doing the First Come First Serve (FCFS) in the database. The second way
the schedule used to resolve conflict is by facilitating data isolation to make sure that
the transactions do not update the same data element.

Two types of Schedules:

i. Serial Schedule:
Serial Execution is an execution where transactions are executed in a Sequential Order,
that is, one after another. A transaction may consist of many operations. Serial Execution
means that all the operations of one transaction are executed first, followed by all the operations
of the next transaction and like that. A Schedule or History is a list of operations from
one or more transactions. A Schedule represents the order of execution of operations.
The order of operations in a Schedule should be the same as in the transaction.
Schedule for a serial execution is called a Serial Schedule, so in a Serial Schedule,
all operations of one transaction are listed followed by all the operations of other transactions
and so on. With a given set of transactions, there could be different Serial Schedules.
For example, if there are two transactions, then there could be two different Serial Schedules
as is explained in the table below:

Serial Schedule 1
TA, TB

BAL
Serial Schedule 2

TB, TA
BAL

Read (BAL)A 50 Read (BAL)B 50

(BAL = BAL – 10)A 40 (BAL=BAL * 2)B 100

Write (BAL)A 40 Write (BAL)B 100

Read (BAL)B 40 Read (BAL)A 100

(BAL=BAL * 2)B 80 (BAL = BAL – 10)A 90

Write (BAL)B 80 Write (BAL)A 90

Table: Two different Serial Schedules, TA, TB and TB, TA

The table shows two different schedules of two transactions TA and TB. Serial Schedule is a
plan to execute transactions serially. The internal sequencing of each transaction is preserved
(well maintained). A Serial Schedule ensures that each transaction executes as if it is the only
one accessing the database at one time.

ii. Serializable Schedule:
Serializable Schedule is a non-serial schedule in which transaction operations are interleaved
while ensuring consistency. An interleaved schedule is said to be serializable if its final state
is equivalent to some Serial Schedule. Serializable Schedule can also be defined as a schedule
in which conflicting operations are in a Serial Order. The Serializable Schedule ensures
the consistency of the database. However, this is worthwhile to mention here again that
serializability takes care of the inconsistencies only due to the interleaving of transactions.
The serializability concerns generating Serializable Schedules. It has no read and write conflicts
which can affect database consistency. It also does not suffer from issues such as lost update,
dirty read etc.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

34

Database Failure:
In every DBMS, there is a possibility of hardware or software failure. The failures may occur
without warning. The data in the database may be lost or damaged due to the failure of DBMS.
After a failure occurs, a DBMS should recover the information that was entered into
the database. The most common reasons of Failure are: Failure of computer system, Breakdown
of hardware, Program bugs, User mistakes.

Database Failure Classification/Types:

Generally, there are three types of Failures as follows:

1. Transaction Failure
2. System Failure
3. Media Failure/Disk Failure

1. Transaction Failure:
A transaction has to abort (terminate) when it fails to execute or when it reaches a point from
where it can’t go any further. This is called Transaction Failure where only a few transactions or
processes are hurt. Transactions may fail because of incorrect input, deadlock, incorrect
synchronization.

Reasons for a Transaction Failure could be:

 Logical Errors:
Where a transaction cannot complete because it has some code error or any internal error.

 System Errors:
Where the database system itself terminates an active transaction because the DBMS is not able
to execute it, or it has to stop because of some system condition (disorder). For example, in case
of deadlock or resource unavailability, the system aborts an active transaction.

2. System Failure:
A System Failure is also known as Instance Failure. It is a failure of the main memory of a
computer system. System Failures may be caused by a power failure, an application or
operating system crash, memory error or some other reason. The end result is the unexpected
termination of the Database Management System (DBMS) software.

3. Media Failure/Disk Failure:
A Media Failure is also known as Instance Failure. It is a failure of the disk storage system of
a computer system. In early days of technology evolution, it was a common problem where
hard-disk drives or storage drives used to fail frequently. Disk Failures include formation
(creation) of bad sectors, unreachability to the disk, disk head crash or any other failure, which
destroys all or a part of disk storage.

Database Recovery and Recovery Techniques:
DBMS is a highly complex system with hundreds of transactions being executed every second.
If it fails or crashes amid (among) transactions, it is expected that the system would follow some
sort of algorithm or techniques to recover the lost data.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

35

Important Terms:

Atomicity: A transaction must be an atomic unit of work. A transaction must completely succeed
or completely fail. If any statement in transaction fails, the entire transaction fails completely.
Consistency:A transaction must leave the data in a consistent state after completion.
Isolation: All transactions that modify the data are isolated from each other. They don’t access
the same data at the same time.
Durability: The durability means that the modifications made by a transaction are permanent
and persistent (determined). If the system is crashed or rebooted, data should be guaranteed to be
completed when the computer restarts.
Old values: before image (BFIM)
New values: after image (AFIM)
Undo: Restore all BFIMs on to disk (Remove all AFIMs).
Redo: Restore all AFIMs on to disk.
Write ahead logging: BFIM of the data item is recorded in the appropriate log
entry and that the log entry is flushed to disk before the BFIM is overwritten with the AFIM in the
database on disk.
Force writing: If all data updated by a transaction are immediately written to disk when the
transaction commits, it is called a force writing.
Committed transactions: Transactions that have completed before the time of failure.
Active transactions: That have started but not committed at the time of failure.
Immediate Update: As soon as a data item is modified in cache, the disk copy is updated.
Deferred Update: All modified data items in the cache is written either after a transaction ends
its execution or after a fixed number of transactions have completed their execution.

System Log/Transaction Log:
The system must keep information about the changes that were applied to data items by
the various transactions. This information is typically kept in the System Log. Log is
a sequence of records, which maintains the records of actions performed by a transaction.
It is important that the logs are written prior (previous) to the actual modification and stored on
a stable storage media, which is failsafe.
Log entries are sequential in nature. The Transaction Log is split up into small chunks
(portions) called Virtual Log Files. When a Virtual Log File is full, transactions automatically
move to the next Virtual Log File.

Log Buffer: Stored at volatile memory (main memory).
Log File: Stored at non-volatile memory (disk).

Types of entries in System Log:

1. [start_transaction, T]: Indicates that transaction T has started execution.

2. [write_item, T, X, old_value, new_value]: Indicates that transaction T has changed
the value of database item X from old_value to new_value.

3. [read_item, T, X]: Indicates that transaction T has read the value of database item X.

4. [commit, T]: Indicates that transaction T has completed successfully, and affirms that
its effect can be committed (recorded permanently) to the database.

5. [abort, T]: Indicates that transaction T has been aborted.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

36

Checkpoint:

A [checkpoint] record is written into the log periodically. At this point, system writes out to the
database on disk all DBMS buffers that have been modified. All transactions having [commit,
T] entries in the log before a [checkpoint] entry need not to be redone in case of a system crash.
Checkpoints are used in conjunction (combination) with transaction logs. Checkpoint is
a mechanism where all the previous logs are removed from the system and stored permanently
in a storage disk. Checkpoint declares a point before which the DBMS was in consistent state,
and all the transactions were committed. A checkpoint is a marker that indicates the last time
a database and transaction log were synchronized. If the database must be restored,
only after – images for transactions that began after the last checkpoint need to be applied.

System restart will restore Trans 1 successfully that is committed before checkpoint.
The Tran 2 will need to be redone using forward (rollforward) recovery as it started after the
checkpoint and was committed before the crash. Trans 3 also will need to be redone using
forward (rollforward) recovery as it was started before the checkpoint but committed before the
crash. So, both Trans 2 and Trans 3 are part of a redo list. Trans 4 and Trans 5 will need to be
undone using backward (rollback) recovery as both were uncommitted at the time of the crash.

Database Recovery Techniques:
When a system crashes, it may have several transactions being executed and various files opened
for them to modify the data items. Transactions are made of various operations, which are atomic
in nature.

There are three types of Recovery Techniques:

• Recovery by Transaction Rollback (Undo) and Rollforward (Redo)
• Recovery Based on Deferred Update
• Recovery Techniques Based on Immediate Update

Recovery by Transaction Rollback (Undo) and Rollforward (Redo):
In this strategy, a transaction log file is created. All transactions that make changes to
the database, are recorded in transaction log before they are applied to the database. If there is
any failure in the system, the log file is used to reapply all changes to the database.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

37

A database that has been completely corrupted, may require forward recovery from
the last backup. This process would apply after images of committed transactions to
the backup copy.

Secondly, the method of rollback is applied. In this process, all changes made by
different transactions are undone. Then the valid transactions that were in process at the time
of failure are restored. Transactions that were incomplete at the time of a failure are identified
and the before image is applied to the database.

Both rollforward and rollback require log file. All changes are stored in log file before
the changes are applied to the database.

Backward Recovery – undo transactions, apply before images

Start Transaction Log End

Forward Recovery – redo transactions, apply after images of committed transactions

Some Recovery Manager (RM) use strategies which involve the building of undo and redo
lists. The redo list may only contain the most recent committed transactions for a given record.
The undo list may only contain the earliest transaction for a given record.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

38

Example: The read and write operations of three transactions:

System log at point of crash:

Operations before the crash:

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

39

Recovery Based on Deferred Update:

Also called No-UNDO/REDO approach. The idea is to postpone any actual updates to the
database on disk until the transaction reaches its commit point. During transaction execution,
the updates are recorded only in the log and force written to disk only after transaction reaches
its commit point.
If a transaction fails before reaching its commit point, there is no need to undo any operations
because the transaction has not affected the database on disk in any way. It means that after
reboot from a failure the log is used to redo all the transactions affected by this failure. No undo
is required because no AFIM is flushed to the disk before a transaction commits.

System restart will restore Trans 1 successfully that is committed before checkpoint.
The Tran 2 will need to be redone using forward (rollforward) recovery as it started after
the checkpoint and was committed before the crash. Trans 3 also will need to be redone using
forward (rollforward) recovery as it was started before the checkpoint but committed before
the crash. So, both Trans 2 and Trans 3 are part of a redo list. Trans 4 and Trans 5 will no need
to be undone because no AFIM is flushed to the disk before a transaction commits.

Recovery Techniques Based on Immediate Update:
when a transaction issues an update command, the database on disk can be updated
immediately, without waiting for the transaction to commit. It is not mandatory that every
update applied immediately to disk. It is possible that some updates are applied to disk before
the transaction commits. In this algorithm, AFIMs of a transaction are flushed to the database
disk before it commits. For this reason, the Recovery Manager undoes all transactions during
recovery. No transaction is redone.

Two Variations:
 UNDO/NO-REDO: If the recovery technique ensures that all updates of a transaction are

recorded in the database on disk before the transaction commits, REDOing is not required.
 UNDO/REDO: If the transaction is allowed to commit before all its changes are written

to the database. Example:

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

40

System restart will restore Trans 1 successfully that is committed before checkpoint.
The Tran 2 will need to be redone using forward (rollforward) recovery as it started after the
checkpoint and was committed before the crash. Trans 3 also will need to be redone using
forward (rollforward) recovery as it was started before the checkpoint but committed before the
crash. So, both Trans 2 and Trans 3 are part of a redo list. Trans 4 and Trans 5 will need to be
undone using backward (rollback) recovery as both were uncommitted at the time of the crash.

Integrity Control System:
Integrity Controls are mechanisms and procedures that are built into a system to safeguard the
system and the information within it. Some of the controls—called Integrity Controls—must be
integrated into the Application Programs that are being developed and the database that
supports them. Integrity controls ensure correct system function by rejecting invalid data
inputs, preventing unauthorized data outputs, and protecting data and programs against accidental
or malicious tampering (interfering).

The primary objectives of Integrity Controls System are to:

 Ensure that only appropriate and correct business transactions occur.
 Ensure that the transactions are recorded and processed correctly.
 Protect and safeguard the assets of the organization (including hardware, software, and

information).

Constraints:
Constraints are restriction on database which ensure that the data is accurate.

Types of Integrity Constraints:

i. Not Null (Required Data)
ii. Entity Integrity (Primary Key Constraint)

iii. Referential Integrity (Foreign Key Constraint)
iv. Domain Constraints
v. General Constraints

i. Not Null Constraint:

• Null:
Represents a value for an attribute that is currently unknown or is not applicable for this tuple.
However, a null is not the same as a zero numeric value or a text string filled with spaces, zeros
and spaces are values, but a null represents the absence of a value.
• Not Null Constraint:
The value of an attribute cannot be null during the insertion of a record.

ii. Entity Integrity:
This is related to the concept of Primary Keys. All tables should have their own Primary Keys
which should uniquely identify a row and not be NULL. Entity Integrity means, in a (base)
relation, no attribute of a Primary Key can be null.
By definition, a Primary Key is a minimal identifier that is used to identify tuples uniquely.
This means that no subset of the Primary Key is sufficient to provide unique identification of
tuples. If a null allows for any part of a Primary Key, we are implying (suggesting) that not all
the attributes are needed to distinguish between tuples, which contradicts (denies) the definition
of the Primary Key.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

41

iii. Referential Integrity:
This is related to the concept of Foreign Keys. A Foreign Key is a key of a relation that is
referred in another relation. If a Foreign Key exists in a relation, either the Foreign Key value
must match a Candidate Key value of some tuple in its home relation or the Foreign Key value
must be wholly null.

iv. Domain Integrity - This means that there should be a defined domain for all the columns in
a database. Restricting an attribute to its domain values.
A domain is defined as the set of all unique values permitted for an attribute. For example,
a domain of date is the set of all possible valid dates, a domain of integer is all possible
whole numbers, a domain of day-of-week is Monday to Sunday (7 days).

v. General Constraints:
Additional rules specified by the users or Database Administrators of a database that define
or constrain some aspect of the enterprise.

Database Security:
Database Security refers to the process of protects and safeguards the database from unauthorized
access or cyber-attacks. There are different types of Database Security such as encryption,
authentication, backup, application security and physical security which should implement in your
business.

Types of Database Security:
The main purpose of Database Security is to keep secure sensitive information of a database and
maintain the database confidentiality, integrity, and availability. The types of Database Security
are key techniques which are used to provide the Database Security.

Database Security is important to protect from cyber-attacks which can lead to financial loss,
damage of brand reputation, business continuity and customer confidence.

The main Security types of a database are as follows:

1. Authentication
2. Authorization
3. Database Encryption
4. Backup Database
5. Physical Security
6. Application Security
7. Access Control
8. Web Application Firewall
9. Use Strong Password
10. Database Auditing

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

42

1. Authentication
Database Authentication is the type of Database Security that verify the user’s login credentials
which stores in database. If user’s login credentials match in database, then user can access the
database. That means the user has authentication to login into your database.

Authentication can be done at the operating system level or even the database level itself.
Digital Signatures are used to verify the authenticity of data i.e., Password based Authentication.

Many other Authentication systems such as retina scanners or bio-metrics are used to make sure
unauthorized people cannot access the database.

If an authentic user has some privilege to access the data, then he can’t access the other data which
are out of privilege. No unauthorized or malicious user can’t login into your database. So, database
authentication plays an important role for ensure Database Security.

2. Authorization:
Authorization is a privilege provided by the Database Administer. Users of the database can
only view the contents they are authorized to view.

The different permissions for Authorizations available are:

Primary Permission: This is granted to users publicly and directly. Grants the
authorization ID directly.

Secondary Permission: This is granted to groups and automatically awarded to a user if he
is a member of the group.

Public Permission: This is publicly granted to all the users.

Context Sensitive Permission: This is related to sensitive content and only granted to a
select users. Grants to the trusted context role.

3. Database Encryption
Encryption is one of the most effective types of Database Security which protect your database
from unauthorized access during storing and transmission over the internet.

There are different types of encryption algorithm such as AES, MD5, and SHA 1 which are used
to encrypt and decrypt the all types of sensitive data.

Typically, an encryption algorithm transforms the plain text data into ciphertext of unreadable
formats within a database. So, if hackers get access your database, then they can’t use your data
until the data is decrypt.

It is highly recommended to you that encrypt your sensitive data while storing into database
because it provides security and protect from cyber-attacks.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

43

4. Backup Database
Backup is another type of Database Security which used to restore data in case of data loss,
data corruption, hacking, or natural disasters. It copying or archiving the database in real time on
a secondary storage.

If you configured the Primary and Secondary Servers at same place and if the Primary Server
is destroyed then there has a chance to destroy the Secondary Server. So, you can’t run your
application and your system will shut down until you recover.

That’s why it is suggested that, always configure the Secondary Server physically in separate
location in order to ensure Database Security. In that case, if the Primary Server is down then
you can recover database from Secondary Server.

There are different types of database backup such as full backup, differential and incremental
backup.

5. Physical Security
Physical Database Security is the protection of database server room in order to protect from
unauthorized access. Database Server should be located in secured and climate-controlled
environment in a building.

Only DBA (Database Administration) and Authorized IT (Information Technology) Officer can
enter into the Server Room. If your Database Server is in cloud data center then your service
provider will take necessary action to secure your database. In that case, before hosting your
database in a cloud you can ask them how they will secure your database?

It is also suggested that, if possible then don’t host the database server and application on the same
server. Both servers should physically isolated for security purposes and performance also. Even
you can make a policy for database server room which may include room is locked all times, only
authorized IT Officer can check the server room environment etc.

6. Application Security
Application and Database have to secure in order to protect from web attacks such as
SQL injection. SQL injection is the most common web attacks where hacker control application’s
database to hack sensitive information or destroy the database.

In this technique, the attacker adds the malicious code in SQL query, via web page input.
It is occurring when an application fails to properly sanitize the SQL statements. So, attacker can
add their own malicious SQL statements to access your database for malicious purposes.

To protect from SQL injection attacks, you can secure application by applying the following
prevention methods:

 Use of Prepared Statements

 Use a Web Application Firewall

 Updating system

 Validating user input

 Limiting Privileges

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

44

7. Access Control
To ensure of Database Security you have to restrict the access of database from unauthorized
users. Only Authorized User can get access the database and unauthorized user can’t access
the database. Create user accounts by DBA who will access the database and set a role and limit
what they can access in your database.

So, Access Control is a type of Database Security which can secure your database by restricting
unauthorized users’ access.

8. Web Application Firewall
A Web Application Firewall or WAF is an application based cyber security tool which is
the Database Security best practice. WAF has designed to protect applications by filtering,
monitoring and blocking HTTP malicious traffic.

This Database Security measure controls who can access the application and prevent intruders
from accessing the application via the internet. To secure your application from malicious users
you should use a Web Application Firewall which will protect your application, database.

One of the following Web Application Firewalls can be used in a system:

 Fortinet FortiWeb

 Citrix NetScaler AppFirewall

 F5 Advanced WAF

 Radware AppWall

 Symantec WAF

 Barracuda WAF

 Imperva WAF
9. Use Strong Password
This is simple but very important tips for ensure Database Security. As a DBA or IT Officer
should use Strong Password for database login and never share your password with others.

If you use easy password such as your mobile no, employee id, date of birth which is known to
hackers and they will try to login using these passwords. As a result, you will lose your database
control.

So, create a Strong Password for database login using combination of letters, numbers,
special characters (minimum 10 characters in total) and change the password regularly.
For example: T#$jk67@89m* can be a Strong Password for your database login.

10. Database Auditing
Auditing is very important types of Database Security Control which can help to detect and
identify of unauthorized access to your DBMS (Database Management System).

Database Auditing regularly check the log files for who access the database, when they accessed,
how long time stay there and what they did in database. It can easily find out if there is
unauthorized access to database server. Database Auditing is a type of database protection
which can provides overall monitoring for Database Security of an organization.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

45

Week No. 12: Relational Algebra

Relational Algebra:
Relational Algebra is a Procedural Query Language that processes one or more relations to
define another relation without changing original relations. The operands as well as the result are
relations. The output of one operation can become the input of another operation to create nested
expression in Relational Algebra. This property is known as Closure.

Basic Operations of Relational Algebra:

There are two categories of Operations in Relational Algebra:
1. Unary Operations
2. Binary Operations

1. Unary Operations:
The operations which involve only one relation are called Unary Operations.
The following operations are the Unary Operations:

i. Selection Operation
ii. Projection Operation

i. Selection Operation:

The Selection Operation is a Unary Operation. The Selection Operator is Sigma σ. It acts like a
filter on a relation. It returns only a certain number of tuples. It selects the tuples using a condition.

The condition appears as subscript to σ. The resulting relation has the same degree as the
original relation. However, the resulting relation may have fewer tuples than the original relation.

The general syntax is: σ c (R)

σ c (R) returns only those tuples in R that satisfy condition C. A condition C may consist of
any combination of comparison or logical operators that operate on the attributes of R.

 Comparison Operators: = , < , > , ≥ , ≤ , ≠

 Logical Operators: ˄ , ˅ , ¬

Examples:

Assume a relation EMP has the following tuples:

Name Office Dept Rank
Saleem 400 CS Assistant
Junaid 220 Econ Lecturer

Ghafoor 160 Econ Assistant
Babar 420 CS Associate

Saleem 500 Fin Associate

Question No. 01: Select only those Employees who are in CS department.

σ dept = ‘CS’ (EMP)
Result:

Name Office Dept Rank
Saleem 400 CS Assistant
Babar 420 CS Associate

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

46

Question No. 02: Select only those Employees with last name Saleem who are Assistant
Professors.

σ Name = ‘Saleem’ ˄ Rank = ‘Assistant’ (EMP)

Result:

Name Office Dept Rank
Saleem 400 CS Assistant

Question No. 03: Select only those Employees who are Assistant Professors or in Economics

department.

σ Rank = ‘Assistant’ ˅ Dept = ‘Econ’ (EMP)

Result:

Name Office Dept Rank
Saleem 400 CS Assistant
Junaid 220 Econ Lecturer

Ghafoor 160 Econ Assistant

Question No. 04: Select only those Employees who are not int the CS Department or Lecturer.

σ ¬ (Rank = ‘Lecturer’ ˅ Dept = ‘CS’) (EMP)

Result:

Name Office Dept Rank
Ghafoor 160 Econ Assistant
Saleem 500 Fin Associate

ii. Projection Operation:

Projection is also a Unary Operator. Th Projector Operator is pi ℼ. It limits the attributes returned
from the original relation. The resulting relation has the same number of tuples as the original
relation. The degree of the resulting relation may be equal to or less than the original relation.

The general syntax is: ℼattributes R

Where attributes are the list of attributes to be displayed and R is the relation.

Examples:

Assume a relation EMP has the following tuples:

Name Office Dept Rank
Saleem 400 CS Assistant
Junaid 220 Econ Lecturer

Ghafoor 160 Econ Assistant
Babar 420 CS Associate

Saleem 500 Fin Associate

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

47

Question No. 01: Display only the names and departments of the employees.

ℼName, dept EMP

Result:

Name Dept
Saleem CS
Junaid Econ

Ghafoor Econ
Babar CS

Saleem Fin

Combining Selection and Projection:
The Selection and Projection operators can be combined to perform both operations.

Question No. 02: Display the names of all employees working in the CS department.

ℼName (σ Dept = ‘CS’ (EMP))
Result:

Name
Saleem
Babar

Question No. 03: Show name and rank of those Employees who are not in CS department or

Lecturer.

ℼName, Rank (σ ¬ (Rank = ‘Lecturer’ ˅ Dept = ‘CS’) (EMP))
Result:

Name Rank
Ghafoor Assistant
Saleem Associate

2. Binary Operations:
The operations which involve pairs of relations are called Binary Relation Operations. A Binary
Operations uses two relations as input and produces a new relation as output.

The following Set Operations are the Binary Operations:

i. Union
ii. Set Difference
iii. Intersection
iv. Cartesian Product

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

48

i. Union:
The Union operation of two relations combines the tuples of both relations to produce a third
relational if two relations contain identical tuples, the duplicate tuples are eliminated. The notation
for the Union of two relations A and B is A UNION B.

It is donated by: U

If A is defined as A = { a, b, c } and set B is defined as B = { a, c, 1, 2 }, then C = A U B will
return C = { a, b, c, 1, 2}.

The relations used in the Union operation must have same number of attributes. The corresponding
attributes must also come from same domain. Such relations are also called Union compatible
relations.

Union are Commutative Operations: A U B = B U A

Example: A U B

Following is an example of Union operation. Two relations A and B are combined together by
using Union Operator.

 Table A Table B A U B

X Y Z
1 A 10
2 B 20
3 C 30

Figure: Union Operation

ii. Set Difference:
The Difference operation works on two relations. It produces a third relation that contains the
tuples that occur in the first relation but not in second. The difference operation can be performed
on Union compatible relations. The order of subtraction is significant.

The Difference operator is not commutative. It means: A – B ≠ B – A

Example:
Following is an example of Difference operation. There are two relations A and B.

The result of A – B and B – A are as follows:

 Table A Table B A – B B – A

X Y Z
1 A 10
2 B 20
3 C 30

Figure: The Difference Operation

X Y Z
1 A 10
4 D 40
5 E 50

X Y Z
1 A 10
2 B 20
3 C 30
4 D 40
5 E 50

X Y Z
1 A 10
4 D 40
5 E 50

X Y Z

4 D 40

5 E 50

X Y Z
2 B 20
3 C 30

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

49

iii. Intersection:
The Intersection operation works on tow relations. It produces a third relation that only common
tuples. Both relations must be Union compatible.

It is denoted by: ∩

Example:

Following is an example of Intersection operation. There are two relations A and B.

The result of A INTERSECTION B is as follows:

 Table A Table B A ∩ B

X Y Z
1 A 10
2 B 20
3 C 30

Figure: Intersection Operation

iv. Cartesian Product:
The product works on two relations. It concatenates every tuple in one relation with every tuple in
second relation. It is also called Cross Product. The Product of relation A with m tuples and relation
B with n tuples is relation C with m x n tuples.

The product is denoted as: A X B.

The Product needs not to be Union compatible. It means that they can be of different degree.
It is commutative and associative.

 Table A Table B A X B

X Y Z
1 A 10
2 B 20
3 C 30

Figure: Cartesian Product Operation

X Y Z
1 A 10
4 D 40
5 E 50

X Y Z
1 A 10

X Y Z
1 A 10
4 D 40
5 E 50

X1 Y1 Z1 X2 Y2 Z2
1 A 10 1 A 10
1 A 10 4 D 40
1 A 10 5 E 50
2 B 20 1 A 10
2 B 20 4 D 40
2 B 20 5 E 50
3 C 30 1 A 10
3 C 30 4 D 40
3 C 30 5 E 50

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

50

Week No. 13: SQL using Oracle

Oracle:

Oracle Corporation produces products and services to meet Relational Database Management
System needs. The main product is the Oracle Server, which enables the user to store and manage
information by using SQL and PL/SQL engine. The Oracle Server supports ANSI standard SQL
and contains extensions.

SQL:

SQL stands for Structured Query Language. SQL is a programming language used to
communicate with the server to access, manipulate, and control data. SQL is not a full-featured
programming language. It is simply a data sublanguage. It means that it only has language
statements for database definition and processing (querying and updating).

SQL Commands and Syntax:

SQL is, fundamentally, a programming language designed for accessing, modifying and
extracting information from relational databases. As a programming language, SQL has
commands and a syntax for issuing those commands.

SQL commands are divided into several different types, including the following:

1. Data Definition Language (DDL): Data Definition Language commands

(CREATE, ALTER, DROP, RENAME, TRUNCATE) are also called Data Definition
Commands because they are used to define data tables.

2. Data Manipulation Language (DML): Data Manipulation Language commands (INSERT,
UPDATE, DELETE) are used to manipulate data in existing tables by adding, changing or
removing data. Unlike DDL commands that define how data is stored, DML commands
operate in the tables defined with DDL commands.

3. Data Query Language: Data Query Language consists of just one command, SELECT, used

to get specific data from tables. This command is sometimes grouped with the DML
commands.

4. Data Control Language: Data Control Language commands (GRANT, REVOKE) are used

to grant or revoke user access privileges.

5. Transaction Control Language: Transaction Control Language commands (COMMIT,

ROLLBACK) are used to change the state of some data, for example, to COMMIT transaction
changes or to ROLLBACK transaction changes.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

51

SQL Syntax:

SQL Syntax, the set of rules for how SQL statements are written and formatted, is similar to
other programming languages. SQL syntax include the following:

SQL statements start with a SQL command and end with a semicolon (;).

For example: SELECT * FROM customers;

This SELECT statement extracts all of the contents of a table called customers.

SQL was developed by IBM. It is endorsed as a national standard by American National Standards
Institute (ANSI). The most widely implemented version of SQL is ANSI SQL-92 standard.

SQL works with database programs like MS Access, DB2, Informix, MS SQL Server, Oracle etc.

Features of SQL:

The following are some features of SQL:

1. SQL is an English- like language. It uses words like SELECT, INSERT, DELETE etc.

2. SQL is a non-procedural language. The user specifies what to do, not how to do. SQL does
not require to specify the access method to data.

3. SQL commands are not case sensitive.

4. SQL statements can be entered on one or more lines.

5. Keywords cannot be split across lines or abbreviated.

6. SQL processes sets of records rather than a single record at a time. The most common form
of a set of records is table.

7. SQL can be used by a range of users like DBA, Application Programmer, Management
Personnel and many other types of End Users.

8. SQL provides commands for a variety of tasks including:

 Querying data.
 Inserting, Updating, Deleting rows in a table.
 Creating, Modifying, and deleting database objects.
 Controlling access to the database and database objects.

Basic SQL Statements:
The basic SQL statements are as follows:

SELECT Statement with FROM Clause:

SELECT statement is used to select data from a table. It displays result in tabular form.

General Syntax:

SELECT column_name (s) FROM table_name;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

52

The following three Relations (EMP, DEPT, SALGRADE) will be used for SQL statements:

Table: EMP

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADANS CLERK 7788 23-MAY-87 1100 20
7900 JANES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7766 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

Table: DEPT

DEPTNO DNAME LOC
10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON

Table: SALGRADE
GRADE LOSAL HISAL

1 700 1200
2 1201 1400
3 1401 2000
4 2001 3000
5 3001 9999

Examples:

SELECT One Column:

Write a query that display EMPNO from EMP table.

SELECT EMPNO FROM EMP;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

53

Result:

EMPNO

7369
7499
7521
7566
7654
7698
7782
7788
7839
7844
7876
7900
7902
7934

SELECT Multiple Columns:

Write a query that displays the columns EMPNO and ENAME from EMP table.

SELECT EMPNO, ENAME, JOB FROM EMP;

Result:

EMPNO ENAME JOB
7369 SMITH CLERK
7499 ALLEN SALESMAN
7521 WARD SALESMAN
7566 JONES MANAGER
7654 MARTIN SALESMAN
7698 BLAKE MANAGER
7782 CLARK MANAGER
7788 SCOTT ANALYST
7839 KING PRESIDENT
7844 TURNER SALESMAN
7876 ADANS CLERK
7900 JANES CLERK
7902 FORD ANALYST
7934 MILLER CLERK

SELECT All Columns:

Write a query that displays all columns from EMP table.

SELECT * FROM EMP;

The * symbol is used instead of column names to display all columns of a table.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

54

Result:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 7902 17-DEC-80 800 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7876 ADANS CLERK 7788 23-MAY-87 1100 20
7900 JANES CLERK 7698 03-DEC-81 950 30
7902 FORD ANALYST 7766 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

SELECT DISTINCT Statement:

DISTINCT keyword is used to eliminate duplicate rows from the result of a SELECT statement.
If DISTINCT is not used, all rows are returned including duplicates.

DISTINCT One Column:
Write a query to displays all distinct DEPTNO from EMP table.

SELECT DISTINCT DEPTNO FROM EMP;

Result:

DEPNO

 10
 20
 30

DISTINCT Multiple Columns:

Multiple Columns may be used with DISTINCT.

Write a query that displays distinct DEPTNO and JOB from EMP table.

SELECT DISTINCT DEPTNO, JOB FROM EMP;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

55

Result:

DEPNO JOB

 10 CLERK
 10 MANAGER
 10 PRESIDENT
 20 ANALYST
 20 CLERK
 20 MANAGER
 30 CLERK
 30 MANAGER
 30 SALESMAN

SELECT Statement with WHERE Clause:

WHERE Clause is used to retrieve data from a table conditionally. It can appear only after
FROM clause.

General Syntax:

SELECT Column(s) FROM Table WHERE Condition;

Example:
Write a query that displays records of clerks from EMP table.

SELECT * FROM EMP WHERE JOB = ‘CLERK’;

Result:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 7902 17-DEC-80 800 20
7876 ADANS CLERK 7788 23-MAY-87 1100 20
7900 JANES CLERK 7698 03-DEC-81 950 30
7934 MILLER CLERK 7782 23-JAN-82 1300 10

Using Quotes:
SQL uses single quotes around text values. Most database systems also accept double quotes.
Numeric values should not be enclosed in quotes.

SELECT Statement with ORDER BY Clause:
The ORDER BY Clause is used to sort the rows. The process of arranging data or records in
a sequence is called Sorting. A sort can be Ascending or Descending.

SQL uses ASC keyword to specify Ascending Sort and DESC keyword for Descending Sort.
If neither is specified, ASC is used as default. ORDER BY must always be the last Clause in
SELECT statement. If the records contain date values, earliest date will appear first. If the
records contain character values; it will be sorted Alphabetically.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

56

Example No. 01:
Write a query that displays EMP table in alphabetical order with respect to name.

SELECT * FROM EMP ORDER BY ENAME;

Result:

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

7876 ADANS CLERK 7788 23-MAY-87 1100 20
7499 ALLEN SALESMAN 7698 20-FEB-81 1600 300 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 7839 09-JUN-81 2450 10
7902 FORD ANALYST 7766 03-DEC-81 3000 20
7900 JANES CLERK 7698 03-DEC-81 950 30
7566 JONES MANAGER 7839 02-APR-81 2975 20
7839 KING PRESIDENT 17-NOV-81 5000 10
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7934 MILLER CLERK 7782 23-JAN-82 1300 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7369 SMITH CLERK 7902 17-DEC-80 800 20
7844 TURNER SALESMAN 7698 08-SEP-81 1500 0 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30

Example No. 02:
Write a query that displays ENAME, JOB, and SAL columns of EMP table in descending order
by SAL.

SELECT ENAME, JOB, SAL
FROM EMP
ORDER BY SAL DESC;

The column after ORDER BY clause is not required to appear in SELECT clause also.

Result:

ENAME JOB SAL
KING PRESIDENT 5000
SCOTT ANALYST 3000
FORD ANALYST 3000
JONES MANAGER 2975
BLAKE MANAGER 2850
CLARK MANAGER 2450
ALLEN SALESMAN 1600
TURNER SALESMAN 1500
MILLER CLERK 1300
WARD SALESMAN 1250
MARTIN SALESMAN 1250
ADANS CLERK 1100
JANES CLERK 950
SMITH CLERK 800

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

57

ORDER BY Many Columns:
The ORDER BY clause can also be used with multiple columns.

Example No. 03:
Write a query that displays name and salary of all employees from EMP table. Result should be
sorted in ascending order by DEPTNO and then in descending order by SAL.

SELECT ENAME, SAL
FROM EMP
ORDER BY DEPTNO, SAL DESC;

Result:
ENAME SAL
KING 5000
CLARK 2450
MILLER 1300
SCOTT 3000
FORD 3000
JONES 2975
ADANS 1100
SMITH 800
BLAKE 2850
ALLEN 1600
TURNER 1500
WARD 1250
MARTIN 1250
JANES 950

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

58

Week No. 14: Built in Functions

Functions:
Functions are used to manipulate data item. They accept one or more arguments and return one
value. An argument is user-supplied constant, variable or column reference. The format for a
function is as follows:

Function name (argument1, argument2……)

Aggregate Functions:
Aggregate functions generate summary value. They can be applied to all the rows in a table or the
rows specified by WHERE clause. Aggregate functions generate a single value from each set of
rows. Aggregate functions such as COUNT, AVG, SUM, MAX, MIN generate a summary value.

i. COUNT Function:
Count function is used to count the number of rows.

Syntax:
COUNT (*/Column_name/DISTINCT Column_name)

COUNT (*):
The COUNT (*) is used to count all the rows including rows containing duplicates and null values.

Example No. 01:
Write a query that displays total columns in EMP table.

SELECT COUNT (*)
FROM EMP
WHERE DEPTNO = 20;

Result:
 COUNT (*)

 5
The above example counts all the Employees in department 20 of EMP table including rows
containing duplicate and null values.

COUNT (Column_name):
The COUNT (Column_name) is used to count the values in the column specified excluding any
null values.

Example No. 02:
Write a query that displays total records in COMM column of EMP table.

SELECT COUNT (COMM)
FROM EMP;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

59

Result:
 COUNT (COMM)

 4
The above example counts the values in COMM excluding null values.

COUNT (DISTINCT Column_name):
The COUNT (Distinct Column_name) is used to count all the rows excluding rows containing
duplicate and null values.

Example No. 03:

SELECT COUNT (DISTINCT MGR)
FROM EMP;

Result:
 COUNT (DISTINCT Mgr)

 6
The above example counts the value in MGR Column after eliminating duplicates and null values.

ii. AVG Function:
The AVG Function returns the average of all values of expression. AVG Function can be used
with numeric column only and will automatically ignore the null values.

Syntax:
AVG (ALL/DISTINCT/Expression)

AVG (ALL):
It is the default and is applied to all values.

AVG (DISTINCT):
It indicates that AVG is performed only on each unique instance of a value.

AVG (Expression):
It is any valid expression like column name.

Example No. 04:
Write a query that calculates the average salary of all employees.

SELECT AVG (SAL)
FROM EMP;

Result:
 AVG (SAL)

 2073.2143

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

60

iii. SUM Function:
The SUM Function returns the sum of all values in an expression. It supports the use of DISTINCT
to summarize only unique value in the expression. Null values are ignored. It can be used only
with numeric columns.

Syntax:
SUM (ALL/DISTINCT)

Example No. 05:
Write a query that displays the sum of salaries of all clerks in EMP tanle.

SELECT SUM (SAL)
FROM EMP
WHERE JOB = ‘CLERK’;

Result:
 SUM (SAL)

 4150

iv. MAX Function:
The MAX Function returns the maximum value in an expression. It ignores all null values. It can
be used with all datatypes.

Syntax:
MAX (ALL/DISTINCT/Expression

Example No. 06:
Write a query that finds the maximum salary earned by clerk.

SELECT MAX (SAL)
FROM EMP
WHERE JOB = ‘CLERK’;

Result:
 MAX (SAL)

 1300

v. MIN Function:
The MIN Function returns the minimum value in an expression. It ignores all null values. It can
be used with all datatypes.

Syntax:
MIN (ALL/DISTINCT/Expression)

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

61

Example No. 07:
Write a query that finds the minimum salary earned by clerk.

SELECT MIN (SAL)
FROM EMP
WHERE JOB = ‘CLERK’;

Result:
 MIN (SAL)

 800

Example No. 08:
Write a query that finds minimum, maximum and average salaries of all employees.

SELECT MAX (SAL), MIN (SAL), AVG (SAL)
FROM EMP;

Result:
 MAX (SAL) MIN (SAL) AVG (SAL)
 --------------- -------------- ---------------
 5000 800 2073.2143

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

62

Week No. 15: GROUP BY clause and Joining

GROUP BY:

The GROUP BY clause can be used to divide the rows in a table into smaller group. If aggregate
function is used in SELECT statement, GROUP BY clause produces a single value per aggregate.

Syntax:

GROUP BY Column_name

Example No. 01:

Write a query that calculates the average salary for each different job.

SELECT AVG (SAL)
FROM EMP
GROUP BY JOB;

Result:

 AVG (SAL)

 3000
 1037.5
 2758.3333
 5000
 1400

Example No. 02:
Write a query that finds the minimum, maximum salary for each job type.

SELECT JOB, MAX (SAL), MIN (SAL)
FROM EMP
GROUP BY JOB;

Result:

 JOB MAX (SAL) MIN (SAL)
 ----- --------------- --------------
 ANALYST 3000 3000
 CLERK 1300 800
 MANAGER 2975 2450
 PRESIDENT 5000 5000
 SALESMAN 1600 1250

Excluding Rows in GROUP BY Clause:
Some rows may be pre-excluded in WHERE clause before dividing them into groups.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

63

Example No. 03:
Write a query that displays the average salary for each Job excluding managers.

SELECT JOB, AVG (SAL)
FROM EMP
WHERE JOB! = ‘MANAGER’
GROUP BY JOB;

Result:
 JOB AVG (SAL)
 --------------- ---------------
 ANALYST 3000
 CLERK 1037.5
 PRESIDENT 5000
 SALSMAN 1400

GROUPs within GROUPs:
It is also possible to use GROUP BY clause to provide results for groups within groups.

Example No. 04:
Write a query that displays average monthly salary for each job type in department.

SELECT DEPTNO, JOB, AVG (SAL)
FROM EMP
GROUP BY DEPTNO, JOB;

Result:
 DEPTNO JOB AVG (SAL)
 ------------ ------------- ---------------
 10 CLERK 1300
 10 MANAGER 2450
 10 PRESIDENT 5000
 20 ANALYST 3000
 20 CLERK 950
 20 MANAGER 2975
 30 CLERK 950
 30 MANAGER 2850
 30 SALESMAN 1400

Joining:
Joining is used to combine the rows from multiple tables. A Join creates a temporary table with all
retrieved columns from the tables specified in the Join.

Example:

SELECT * FROM A, B;

In the above examples, A and B are two tables. It will create a temporary table with all rows from
Cartesian product of table A and B. If table A contains 5 rows and table B contains 10 rows, the
above statement will retrieve 5 x 10 = 50 rows. It may return duplicate or matching rows. A Join
requires horizontal filtering to display desired rows.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

64

The SELECT statement can be written as follows:

SELECT * FROM A, B WHERE X = Y;

Here, X and Y are two columns from table A and B. Table A and B must be joined with a common
column between them. The tables must have at least one matching column in order to be joined.
A join between two tables should have at least one join condition between them.

Types of Joining:

There are basically three different types of Joins:

1. Simple Join
2. Self-Join
3. Outer Join

1. Simple Join:

Simple Join is the most common type of Join. It retrieves rows from two tables. These tables should
have a common column or set of columns that can be logically related. It is further classified into
Equi-Join and Non-Equi-Join.

Equi-Join:

A type of Join that is based on equalities is called Equi-Join.

The syntax of Equi-Join is as follows:

SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column = table2.colmumn2;

The condition in WHERE clause specifies how the tables are joined.

Example:

Write a query that displays EMPNO, ENAME, DEPTNO, DNAME, LOC from EMP and DEPT
tables.

SELECT EMP.EMPNO, EMP.ENAME, EMP.DEPTNO, DEPT.DNAME, DEPT.LOC
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

65

Result:

EMPNO ENAME DEPTNO DNAME LOC

7369 SMITH 20 RESEARCH DALLAS
7499 ALLEN 30 SALES CHICAGO
7521 WARD 30 SALES CHICAGO
7566 JONES 20 RESEARCH DALLAS
7654 MARTIN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7782 CLARK 10 ACCOUNTING NEW YORK
7788 SCOTT 20 RESEARCH DALLAS
7839 KING 10 ACCOUNTING NEW YORK
7844 TURNER 30 SALES CHICAGO
7876 ADANS 20 RESEARCH DALLAS
7900 JANES 30 SALES CHICGO
7902 FORD 20 RESEARCH DALLAS
7934 MILLER 10 ACCOUNTING NEW YORK

In the above example, the statement EMP.DEPTNO = DEPT.DEPTNO performs the join
operation. It retrieves rows from both tables if both have the same DEPTNO as specified in the
WHERE clause. The WHERE clause used = operator to perform a join, it is an Equi-join.

The column names are prefixed by table names because both tables have same column name
DEPTNO. The tables names distinguish between them. If column names are unique, it is not
necessary tables names.

Non-Equi-Join:

A non equi-join specifies the relationship between columns of different tables by using relational
(>, <, =, >=, <=, <>) other than =. The following example is illustrating non-equi join.

Example:

Write a query that displays ENAME, SAL, and GRADE from EMP table and GRADE from
SALGRAGE table of those employee whose SAL of EMP table is between LOSAL and HISAL
of SALGRADE table.

SELECT EMP.ENAME, EMP.SAL, SALGRADE.LOSAL AND SALGRADE.HISAL;
FROM EMP, SALGRADE
WHERE EMP.SAL BETWEEN SALGRADE.LOSAL AND SALGRADE.HISAL;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

66

Result:

ENAME SAL GRADE
---------- ----- ----------
SMITH 800 1
ADAMS 1100 1
JAMES 950 1
WARD 1250 2
MARTIN 1250 2
MILLER 1300 2
ALLEN 1600 3
TURNER 1500 3
JONES 2975 4
BLAKE 2850 4
CLARK 2450 4
SCOTT 3000 4
FORD 3000 4
KING 5000 5

2. Self-Join:
Self-Join is a type of join in which a table is joined with itself.

Example:
Write a query that displays EMPNO, ENAME, of employee along with their MGR.

SELECT E.EMPNO, E.ENAME, E.MGR, M.ENAME, MANAGER
FROM EMP E, EMP M
WHERE E.MGR = M. EMPNO;

Result:

EMPNO ENAME MGR MANAGER
---------- ----------- ------- ---------------
7369 SMITH 7902 FORD
7499 ALLEN 7698 BLAKE
7521 WARD 7698 BLAKE
7566 JONES 7839 KING
7654 MARTIN 7698 BLAKE
7698 BLAKE 7839 KING
7782 CLARK 7839 KING
7788 SCOTT 7566 JONES
7844 TURNER 7698 BLAKE
7876 ADAMS 7788 SCOTT
7988 JAMES 7698 BLAKE
7902 FORD 7566 JONES
7934 MILLER 7782 CLARK

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

67

3. Outer Join:
The outer join extends the result of a simple join. It returns all rows returned by simple join as well
as those rows from one table that don’t match any row from other table. The symbol (+) represents
outer join.

Example:

SELECT EMP.EMPNO, EMP.ENAME, EMP.DEPTNO, DEPT.DNAME, DEPT.LOC
FROM EMP, DEPT
WHERE EMP. DEPTNO (+) = DEPT.DEPTNO;

Result:

EMPNO ENAME DEPTNO DNAME LOC
---------- ---------- ----------- ------------------- ------
7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS
7499 ALLEN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7654 MARTIN 30 SALES CHICAGO
7900 JAMES 30 SALES CHICAGO
7844 TURNER 30 SALES CHICAGO
7521 WARD 30 SALES CHICAGO
 OPERATIONS BOSTON

The above example retrieves rows form DEPT table that do not have any matching records in EMP
table because of the presence of an outer join (+) operator. Outer Join symbol (+) is used after
EMP.DEPTNO in WHERE clause. It is always placed on the side which has the data deficiency.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

68

Week No. 16: Data Definition Language and Data Manipulation Language

Data Definition language (DDL) in DBMS:
Data Definition Language can be defined as a standard for commands through which data
structures are defined. It is a computer language that is used for creating and modifying structure
of the database objects, such as schemas, tables, views, indexes, etc. Additionally, it assists in
storing metadata details in the database.

Some of the common Data Definition Language commands are:

1. CREATE
2. ALTER
3. DROP
4. TRUNCATE

1. CREATE:
The CREATE TABLE statement is used to create a new table. Its syntax is as follows:

CREATE TABLE table_name
(Column1 datatype, Column2 datatype, Column3 datatype, …….. ColumnN datatype);

The Data Type specifies the type of data to be stored in the column. SQL provides the following
common Data Types:

Data Type Description
Char (size) It is a fixed length character string. The size is specified in parenthesis.

The maximum size is 255 bytes.
Varchar (size) It is a variable length character string. The size is specified in parenthesis.
Number (size) It is a number value. The maximum number of column digits is specified in

parenthesis.
Date It is the date value.
Number (size, d) It is number value. The size indicates the maximum number of digits and d

indicates the maximum number decimal points.

Example:

CREATE TABLE EMP
(EMPNO NUMBER (4),
 ENAME VARCHAR2 (30),
 JOB VARCHAR2 (15),
 MGR NUMBER (4),
 SAL NUMBER (7, 2),
 COMM NUMBER (7, 2),
 DEPTNO NUMBER (4));

2. ALTER:
The ALTER TABLE statement is used to add or drop columns in an existing table. It is also used
to change the data type of an existing column of the table.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

69

The General syntaxes of the ALTER command is mentioned below:

ADDING a New Column:
The syntax for adding a new column to an existing table is as follows:

ALTER TABLE table_name
ADD column_name datatype;

Example:
Write a query to add a column CITY in EMP table.

ALTER TABLE EMP
ADD CITY VARCHAR (30);

RENAMING a Table:
The syntax to rename an existing table name is as follows:

ALTER TABLE table_name
RENAME To new_table_name;

Example:
Write a query to rename the existing table name (EMP) to EMPLOYEE.

ALTER TABLE EMP
RENAME To EMPLOYEE;

MODIFYING a Column:
The syntax to modify the data type of an existing column of the table is as follows:

ALTER TABLE table_name
MODIFY column_name data type;

Example:
Write a query to modify the data type of CITY column to CHAR in EMP table.

ALTER TABLE EMP
MODIFY (CITY CHAR (25));

DELETING a Column:
The syntax to delete an existing column from the table is as follows:

ALTER TABLE table_name
DROP COLUMN column_name;

Example:
Write a query to drop ENAME column in EMP table.

ALTER TABLE EMP
DROP COLUMN ENAME;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

70

3. DROP:
The DROP statement is used to delete a table along with table structure, attributes and indexes.

The General syntax of Drop command is mentioned below:

DROP TABLE table_name;

Example:
Write a query to delete EMP table.

DROP TABLE EMP;

4. TRUNCATE:
By using Truncate command, users can remove table content, but structure of the table is kept.
In simple language, it removes all the records from the table structure. Users can’t remove data
partially through this command. In addition to this, every space allocated for the data is removed
by Truncate command.

The syntax of the Truncate command is mentioned below:

TRUNCATE TABLE table_name;

Example:
Write a query to delete all data in EMP table.

TRUNCATE TABLE EMP;

Data Manipulation Language (DML) in DBMS:
Data manipulation language (DML) provides operations that handle user requests, offering a way
to access and manipulate the data that users store within a database. Its common functions include
inserting, updating and retrieving data from the database.

Here is a list of DML statements:

1. INSERT
2. UPDATE
3. DELETE

1. INSERT:
The INSERT INTO statement is used to insert new rows in a table.

The syntax of this statement is as follows:

INSERT INTO table_name
VALUES (value1, value2,………..);

Example:

INSERT INTO DEPT
VALUES (50, ‘EDUCATION’, ‘LAHORE’);

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar

71

The column names can also be specified for which data is to be inserted:

INSERT INTO table_name (column1, column2,…….)
VALUES (value1, value2,…….);

Example:

INSERT INTO DEPT (DEPTNO, DNAME)
VALUES (60, ‘MIS’);

2. UPDATE:
The UPDATE statement is used to modify the existing data in a table.

The syntax of using this statement is as follows:

UPDATE table_name
SET column_name = new_value
WHERE column_name = some_value;

UPDATE One Column in a Row:
The following statement will modify DEPTNO of SMITH:

UPDATE EMP SET DEPTNO = 70
WHERE ENAME = ‘SMITH’;

UPDATE Several Columns in a Row:
The following statement will modify JOB and ENAME of SMITH:

UPDATE EMP
SET JOB = ‘SALESMAN’, ENAME = ‘CLERK’
WHERE ENAME = ‘SMITH’;

3. DELETE:
The DELETE statement is used to delete rows in a table.

The syntax of this statement is as follows:

DELETE FROM table_name
WHERE column_name = some_value;

DELETE a Row:
The following example delete SMITH:

DELETE FROM EMP WHERE ENAME = ‘SMITH’;

DELETE All Rows:
It is possible to delete all rows in a table without deleting the table. The following statement will
delete all data in the table but table structure, attributes, and indexes will not be deleted.

DELETE FROM table_name; OR DELETE * FROM table_name;

Example:

DELETE FROM EMP; OR DELETE * FROM EMP;

