
Huffman Codes

Encoding messages

 Encode a message composed of a string of

characters

 Codes used by computer systems

 ASCII

• uses 8 bits per character

• can encode 256 characters

 Unicode

• 16 bits per character

• can encode 65536 characters

• includes all characters encoded by ASCII

 ASCII and Unicode are fixed-length codes

 all characters represented by same number of bits

Problems

 Suppose that we want to encode a message

constructed from the symbols A, B, C, D, and E

using a fixed-length code

 How many bits are required to encode each

symbol?

 at least 3 bits are required

 2 bits are not enough (can only encode four

symbols)

 How many bits are required to encode the

message DEAACAAAAABA?

 there are twelve symbols, each requires 3 bits

 12*3 = 36 bits are required

Drawbacks of fixed-length codes

 Wasted space

 Unicode uses twice as much space as ASCII

• inefficient for plain-text messages containing

only ASCII characters

 Same number of bits used to represent all characters

 ‘a’ and ‘e’ occur more frequently than ‘q’ and ‘z’

 Potential solution: use variable-length codes

 variable number of bits to represent characters

when frequency of occurrence is known

 short codes for characters that occur frequently

Advantages of variable-length codes

 The advantage of variable-length codes over fixed-

length is short codes can be given to characters that

occur frequently

 on average, the length of the encoded message is

less than fixed-length encoding

 Potential problem: how do we know where one

character ends and another begins?

• not a problem if number of bits is fixed!

A = 00

B = 01

C = 10

D = 11

0010110111001111111111

A C D B A D D D D D

Prefix property

 A code has the prefix property if no character code

is the prefix (start of the code) for another character

 Example:

 000 is not a prefix of 11, 01, 001, or 10

 11 is not a prefix of 000, 01, 001, or 10 …

Symbol Code

P 000

Q 11

R 01

S 001

T 10

01001101100010

R S T Q P T

Code without prefix property

 The following code does not have prefix property

 The pattern 1110 can be decoded as QQQP, QTP,

QQS, or TS

Symbol Code

P 0

Q 1

R 01

S 10

T 11

Problem

 Design a variable-length prefix-free code such that
the message DEAACAAAAABA can be encoded
using 22 bits

 Possible solution:

 A occurs eight times while B, C, D, and E each
occur once

 represent A with a one bit code, say 0

• remaining codes cannot start with 0

 represent B with the two bit code 10

• remaining codes cannot start with 0 or 10

 represent C with 110

 represent D with 1110

 represent E with 11110

Encoded message

Symbol Code

A 0

B 10

C 110

D 1110

E 11110

DEAACAAAAABA

1110111100011000000100 22 bits

Another possible code

Symbol Code

A 0

B 100

C 101

D 1101

E 1111

DEAACAAAAABA

1101111100101000001000 22 bits

Better code

Symbol Code

A 0

B 100

C 101

D 110

E 111

DEAACAAAAABA

11011100101000001000 20 bits

What code to use?

 Question: Is there a variable-length code that makes

the most efficient use of space?

Answer: Yes!

Huffman coding tree

 Binary tree

 each leaf contains symbol (character)

 label edge from node to left child with 0

 label edge from node to right child with 1

 Code for any symbol obtained by following path from

root to the leaf containing symbol

 Code has prefix property

 leaf node cannot appear on path to another leaf

 note: fixed-length codes are represented by a

complete Huffman tree and clearly have the prefix

property

Building a Huffman tree

 Find frequencies of each symbol occurring in

message

 Begin with a forest of single node trees

 each contain symbol and its frequency

 Do recursively

 select two trees with smallest frequency at the root

 produce a new binary tree with the selected trees

as children and store the sum of their frequencies

in the root

 Recursion ends when there is one tree

 this is the Huffman coding tree

Example

 Build the Huffman coding tree for the message

This is his message

 Character frequencies

 Begin with forest of single trees

A G M T E H _ I S

1 1 1 1 2 2 3 3 5

11 31 21 2 3 5

A G I SM T E H _

Step 1

11 31 21 2 3 5

A G I SM T E H _

2

Step 2

11 31 21 2 3 5

A G I SM T E H _

2 2

Step 3

11 311 3 5

A G I SM T _

2 2

2 2

E H

4

Step 4

11 311 3 5

A G I SM T _

2 2

2 2

E H

4

4

Step 5

11 311 3 5

A G I SM T _

2 2

2 2

E H

4

4

6

Step 6

3 3 5

I S_

2 2

E H

4

11 11

A G M T

2 2

4

6

8

Step 7

3 3

5

I

S

_

2 2

E H

4

11 11

A G M T

2 2

4 6

8 11

Step 8

3 3

5

I

S

_

2 2

E H

4

11 11

A G M T

2 2

4 6

8 11

19

Label edges

3 3

5

I

S

_

2 2

E H

4

11 11

A G M T

2 2

4 6

8 11

19

0

00

00

0

0

0

1

11

1 1

1
1

1

Huffman code & encoded message

S 11

E 010

H 011

_ 100

I 101

A 0000

G 0001

M 0010

T 0011

This is his message

00110111011110010111100011101111000010010111100000001010

