
Advanced Analysis of Algorithm

Lecture-07: Dynamic Programming

2

Outline

 Dynamic Programming

 Fibonacci Numbers

 Edit Distance

 Matrix Chain Multiplication

 0/1 Knapsack

 Greedy Algorithms

 Coin Change

 Huffman Encoding

 Activity Selection

Dynamic Programming
 Suppose we put a pair of rabbits in a place surrounded by

on all sides by a wall

 How many pairs of rabbits can be produced from that
pair in a year if it is supposed that every month each pair
begets a new pair which from the second month on
becomes productive?

 Resulting sequence is
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …

 Each number is the sum of previous two numbers

Rabbit Population

Fibonacci investigated

(in the year 1202) how

fast rabbits could breed

in ideal circumstances.

The number of pairs

of rabbits in the field

at the start of each

month is 1, 1, 2, 3, 5,

8, 13, 21, 34, ...

Fibonacci

F0 = 0

F1 = 1

Fn = Fn-1 + Fn-2 for n ≥ 2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,

377, 610, 987, …

Fibonacci is pronounced [fib-on-arch-ee].

Born in Pisa (Italy) about 1175 AD.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fibonacci.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fibonacci.html

Fibonacci number

 The recursive definition of Fibonacci numbers gives us a

recursive algorithm for computing them:

FIB(n)

if (n < 2) then return n

else return FIB(n-1)+FIB(n-2)

Fibonacci number: Recursive Calls

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1) fib(3) fib(2) fib(2) fib(1) fib(2) fib(1) fib(1) fib(0)

fib(5) fib(4)

fib(6)

fib(4) fib(3)

fib(5)

fib(4) fib(3)

fib(5)

fib(3) fib(2)

fib(4)

fib(7) fib(6)

fib(8) Four levels of
recursion for fib(8)

Fibonacci number: Recursive Calls

 A single recursive call to fib(n) results in

 One recursive call to fib(n-1)

 Two recursive call to fib(n-2)

 Three recursive call to fib(n-3)

 Four recursive call to fib(n-4) and

 In general Fk-1 recursive calls to fib(n-k)

 For each call, we are recomputing the same Fibonacci
number from scratch

Fibonacci number Memoization

 We can avoid this unnecessary repetition by writing

down the results of recursive calls and looking them up

again if we need them later

 This process is called memoization

 Memoization: Use a table to remember previously

calculated values. (Store a memo for oneself.)

Fibonacci number Memoization

MEMOFIB(n)

if (n < 2) then return n

if (F[n] is undefined) then

F[n] ← MEMOFIB(n-1)+MEMOFIB(n-2)

return F[n]

Recursion avoidance

Fibonacci number: Iterative Algorithm

ITERFIB(n)

F[0] ← 0

F[1] ← 1

for i ← 2 to n do

F[i] ← F[i-1]+F[i-2]

return F[n]

Fibonacci number: Iterative Algorithm

 This algorithm clearly takes O(n) time to compute Fn

 By contrast the original recursive algorithm takes

618.1
2

51
),(


 n

Dynamic Programming
 Dynamic programming is essentially recursion

without repetition

 Developing a dynamic programming algorithm
generally involves two separate steps

1. Formulate the problem recursively
 Write down a formula for the whole problem as a simple combination of

answers to smaller sub problems

2. Build up solution to recurrence from bottom up
 Write an algorithm that starts with base cases and works its way up to the

final solution

Dynamic Programming

 Dynamic programming algorithms need to store the results

of intermediate sub problems

 This is often but not always done with some kind of table

Edit Distance (Levenshtein distance)

 Levenshtein distance between two strings is given by the minimum
number of operations needed to transform one string into the
other, where an operation is an insertion, deletion, or substitution
of a single character.

 It is named after Vladimir Levenshtein, who considered this
distance in 1965.

 It is useful in applications that need to determine how similar two
strings are, such as:
 Spell checking

 Speech recognition

 DNA analysis

 Plagiarism detection

ED Applications Continue..

 Spelling Correction

 if a text contains a word that is not in the dictionary, a `close'

word, i.e. one with a small edit distance, may be suggested as a

correction.

Edit Distance Application

 Plagiarism Detection
 The edit distance provides an indication of similarity that might

be too close in some situation

ED Applications Continue..

 Computational Molecular Biology

 Similarities in DNA Sequences can provide

 Clue to common evolutionary origin

 Clue to common function

ED Applications Continue..

 Speech Recognition

 Algorithm similar to those for the edit-distance problem are

used in some speech recognition systems.

Editing Operations

FOOD

MOOD F replaced with M

MON▲D O replaced with N

MONED E inserted

MONEY D replaced with Y

Operations: Insertion, Deletion, Substitution, Matching

Edit Distance

 A better to display this editing process is to place the words

above the other:

M A _ T H S

A _ R T _ S

Edit Distance (cont’d)

S D I M D M

M A _ T H S

A _ R T _ S

 The first word has a gap for every insertion (I) and the
second word has a gap for every deletion (D)

 Columns with two different characters correspond to
substitutions (S)

 Matches (M) do not count

Edit Distance (cont’d)

 Edit transcript

 A string over the alpha bet M, S, I, D that describes a

transformation of one string into another

 Example

1+ 1+ 1+ 0+ 1+ 0+ = 4

S D I M D M

M A _ T H S

A _ R T _ S

Edit Distance (cont’d)

 In general it is not easy to determine the optimal edit

distance

 For example, the distance between ALGORITHM and

ALTRUISTIC is at most 6

A L G O R _ I _ T H M

A L _ T R U I S T I C

Edit Distance: DP Formulation
 Suppose we have an m-character string A and an n-character string B

 Define E(i, j) to be the edit distance between the first i characters of A and the

first j characters of B

 E(i, j)

 The edit distance between entire strings A and B is E(m,n)

A L G O R I T H M

A L _ T R U I S T I C

i

j

Edit Distance: DP Formulation

 The gap representation for the edit sequences has a crucial

“Optimal Substructure” property

 If we remove the last column, the remaining columns must

represent the shortest edit sequence for the remaining

substrings

Edit Distance: DP Formulation

A L G O R _ I _ T H M

A L _ T R U I S T I C

 Edit distance = 6

 Remove last column

 Edit distance = 5

A L G O R _ I _ T H

A L _ T R U I S T I

Base Cases

 There are a couple of obvious base cases

 The only way to convert an empty string into a string of j

characters is by doing j insertions. Thus E(0, j) = j

 The only way to convert a string of i characters into an empty

string is with i deletions. Thus E(i,0) = i

Deletion

 Four possibilities for the last column in the shortest possible edit sequence

 Deletion: Last entry in the bottom row is empty

 In this case:
 E(i, j) = E(i-1, j) + 1

 E(3,2) = E(2,2) + 1

A L G O R I T H M

A L _ T R U I S T I C

i=3

j=2

Insertion

 Insertion: The last entry in the top row is empty

 In this case

 E(i, j) = E(i, j-1) + 1

 E(5,5)= E(5,4) + 1

A L G O R _ I T H M

A L _ T R U I S T I C

i=5

j=5

Substitution

 Substitution: Both rows have characters in the last column

 If the characters are different then

 E(i, j) = E(i-1, j-1) + 1

 E(4,3) = E(3, 2) + 1

A L G O R I T H M

A L _ T R U I S T I C

i=4

j=3

Match

 Match: Both rows have characters in the last column

 If the characters are same, no substitution is needed
 E(i, j) = E(i-1, j-1)

 E(5, 4) = E(4, 3)

A L G O R I T H M

A L _ T R U I S T I C

i=5

j=4

Minimum Distance

 Thus the smallest edit distance E(i, j) is the smallest of

the four possibilities































][][)1,1(

][][1)1,1(

1)1,(

1),1(

min),(

jBiAifjiE

jBiAifjiE

jiE

jiE

jiE

deletion

insertion

substitution

match

Example
 Consider the example

 The edit distance would be E(5, 4)

M A T H S

A R T S

Example (Cont’d)

 If we apply recursion to compute, we will have

 Recursion clearly leads to the same repetitive call pattern that we have seen in
Fibonacci sequence

 We will build the solution bottom up































]5[]4[)4,3(

]5[]4[1)4,3(

1)4,4(

1)5,3(

min)5,4(

BAifE

BAifE

E

E

E

deletion

insertion

substitution

match

M A T H S

A R T S

Computing E(i, j)

 Pattern of building E(i, j)

 Use the base case E(0, j) to fill first row

 Use the base case E(i, 0) to fill first column

 Fill the remaining E matrix row by row

E(i-1, j-1) E(i-1, j)

E(i, j-1) E(i, j)

deletion

insertion

substitution

Fill Pattern

diagonal above

left min (above + delete, diagonal + substitute, left + insert)

Cost Matrix

A R T S

0 →1 →2 →3 →4

M
↓

1 1 1 1 1

A
↓

2
0 1 1 1

T
↓

3
1 1 0 1

H
↓

4
1 1 1 1

S
↓

5
1 1 1 0

Example

A R T S

0 →1 →2 →3 →4

M
↓

1 1 →2 →3 →4

A
↓

2

↓

1 →2 →3 →4

T
↓

3

↓

2 2 2 →3

H
↓

4

↓

3

↓

3

↓

3 3

S
↓

5

↓

4

↓

4

↓

4

↓

3

Solution Paths

A R T S

0 →1 →2 →3 →4

M
↓

1 1 →2 →3 →4

A
↓

2

↓

1 →2 →3 →4

T
↓

3

↓

2 2 2 →3

H
↓

4

↓

3

↓

3

↓

3 3

S
↓

5

↓

4

↓

4

↓

4

↓

3

Solution Path 1

A R T S

0 →1 →2 →3 →4

M
↓

1 1 →2 →3 →4

A
↓

2

↓

1 →2 →3 →4

T
↓

3

↓

2 2 2 →3

H
↓

4

↓

3

↓

3

↓

3 3

S
↓

5

↓

4

↓

4

↓

4

↓

3

1+ 0+ 1+ 1+ 0 = 3

D M S S M

M A T H S

_ A R T S

Solution Path 2

A R T S

0 →1 →2 →3 →4

M
↓

1 1 →2 →3 →4

A
↓

2

↓

1 →2 →3 →4

T
↓

3

↓

2 2 2 →3

H
↓

4

↓

3

↓

3

↓

3 3

S
↓

5

↓

4

↓

4

↓

4

↓

3

1+ 1+ 0+ 1+ 0 = 3

S S M D M

M A T H S

A R T _ S

Solution Path 3

A R T S

0 →1 →2 →3 →4

M
↓

1 1 →2 →3 →4

A
↓

2

↓

1 →2 →3 →4

T
↓

3

↓

2 2 2 →3

H
↓

4

↓

3

↓

3

↓

3 3

S
↓

5

↓

4

↓

4

↓

4

↓

3

1+ 0+ 1+ 0+ 1+ 0+ = 3

D M I M D M

M A _ T H S

_ A R T _ S

Edit Distance DP Algorithm

int LevenshteinDistance(char s[1..m], char t[1..n])

declare int d[0..m, 0..n]

for i from 0 to m do d[i, 0] := i

for j from 0 to n do d[0, j] := j

for i from 1 to m

for j from 1 to n

if s[i-1] = t[j-1] then cost := 0 else cost := 1

mc = min(d[i-1,j] + 1, // deletion

d[i,j-1] + 1, // insertion

d[i-1, j-1] + cost) // substitution

d[i, j] := mc

return d[m, n]

Edit Distance Analysis

 There are Θ(n2) entries in the matrix

 Each entry E(i, j) takes Θ(1) time to compute

 The total running time is Θ(n2)

Matrix

 A rectangular Array ,denoted by some capital letter, say A, and is of the form

given below is called a matrix of order m x n

a11 a12 … a1j … a1n

a21 a22 …. a2j …. a2n

…. …. …. …. …. ….

ai1 ai2 …. …. …. ain

… …. …. …. …. ….

am1 am2 …. amj …. amn

A =

Matrix

 Order of a Matrix : if A be a matrix having m rows and n columns,
then its Order is m x n (read as m by n).

 General Element of a Matrix: In the Matrix A ,the element aij is
called the general element . The Subscripts i stands for row and j
stands for column.

 So aij lies at the intersection of the ith row and the jth column of the
matrix A.

 Square matrix : if the number of rows in matrix A equals number of
columns then matrix A is called a Square matrix

Matrix Multiplication

 Two matrices A and B are said to be conformable for multiplication if

Number of columns of A = Number of rows of B

 Let the matrix A = | aij | be of order m x n and B=|b jk | be of the order n x p.

AB = C is defined where C= |cik| is of order n x n and

For i = 1,2,…,m, k = 1,2,…,p.
jk

n

j

ijij bac 



1

Matrix Multiply

 In particular, for 1 ≤ i ≤ p and 1 ≤
j ≤ r

 There are (p · r) total entries in C
and each takes O(q) to compute

 Thus the total number of
multiplications is

(p · q · r)





q

k

jkBkiAjiC
1

],[],[],[

A C

B

d d

f

e

f

e

i

j

i,j

Example 1

If A = B =

Order of A = 3 x 3

Order of B= 3 x 3

Columns of A = Rows of B = 3

So multiplication is possible.

3 4 5

8 7 6

9 2 1

2 5 4

1 7 6

2 3 1

2 5 4

1 7 6

2 3 1

3 4 5

8 7 6

9 2 1

1st element of the product

matrix C is obtained by

multiplying the elements of

the 1st row of Matrix A with the

elements of the 1st column in

the Matrix B and then

summing, and so on, all the

elements are calculated

82 49 25

73 65 52

39 29 29

C=

2x3 + 5x8 + 4x9 2x4 + 5x7 + 4x2 2x5 + 5x6 + 4x1

1x3 + 7x8 + 6x9 1x4 + 7x7 + 6x2 1x5 + 7x6 + 6x1

2x3 + 3x8 + 1x9 2x4 + 3x7 + 1x2 2x5 + 3x6 + 1x1

C=

Example 2

If A = B =

Order of A = 2 x 3

Order of B= 3 x 3

Columns of A = Rows of B = 3

So multiplication is possible. Resultant Matrix will be of the Order 2 x 3.

3 4 5

8 7 6

9 2 1

2 5 4

1 7 6

Sequential Algorithm for Matrix

Multiplication

procedure MATRIX _MULT (A, B, C)

begin

for i := 0 to n - 1 do

for j := 0 to n - 1 do

begin

C[i, j] := 0

for k := 0 to n - 1 do

C[i, j] := C[i, j] + A[i, k] * B [k, j]

end

end MATRIX_MULT

a00 a01 a02
a10 a11 a12
a20 a21 a22

b00 b01 b02
b10 b11 b12
b20 b21 b22

* =

a00*b00+a01*b10+a02*b20 a00*b01+a01*b11+a02*b21 a00*b02+a01*b12+a02*b22
a10*b00+a11*b10+a12*b20 a10*b01+a11*b11+a12*b21 a10*b02+a11*b12+a12*b22
a20*b00+a21*b10+a22*b20 a20*b01+a21*b11+a22*b21 a20*b02+a21*b12+a22*b22

General form for n = 3

Processing for n = 3

Pass 1 i = 0 to n-1 j= 0 to n-1 k= 0 to n-1 C[i, j] := C[i, j] + A [i, k] * B [k, j]

i= 0 j= 0 to 2 K= 0 to2

j=0 K=0 C[0,0] := C[0,0] + A[0, 0] * B [0,0]

K=1 C[0,0] := C[0,0] + A[0, 0] * B [1,0]

K=2 C[0,0] := C[0,0] + A[0, 0] * B [2,0]

j= 1 K=0 C[0,1] := C[0,1] + A[1, 0] * B [0,1]

K=1 C[0,1] := C[0,1] + A[1, 0] * B [1,1]

K=2 C[0,1] := C[0,1] + A[1, 0] * B [2,1]

j=2 K=0 C[0,2] := C[0,2] + A[1, 0] * B [0,2]

K=1 C[0,2] := C[0,2] + A[1, 0] * B [1,2]

K=2 C[0,2] := C[0,2] + A[1, 0] * B [2,2]

Cont’d

Pass 2 i = 0 to n-1 j= 0 to n-1 k= 0 to n-1 C [i, j] := C[i, j] + A [i, k] * B [k, j]

i= 1 j= 0 to 2 K= 0 to2

j=0 K=0 C[1,0] := C[1,0] + A[0, 0] * B [0,0]

K=1 C[1,0] := C[1,0] + A[0, 0] * B [1,0]

K=2 C[1,0] := C[1,0] + A[0, 0] * B [2,0]

j= 1 K=0 C[1,1] := C[1,1] + A[1, 0] * B [0,1]

K=1 C[1,1] := C[1,1] + A[1, 0] * B [1,1]

K=2 C[1,1] := C[1,1] + A[1, 0] * B [2,1]

j=2 K=0 C[1,2] := C[1,2] + A[1, 0] * B [0,2]

K=1 C[1,2] := C[1,2] + A[1, 0] * B [1,2]

K=2 C[1,2] := C[1,2] + A[1, 0] * B [2,2]

Pass 3 i = 0 to n-1 j= 0 to n-1 k= 0 to n-1 C [i, j] := C[i, j] + A [i, k] * B [k, j]

i= 2 j= 0 to 2 K= 0 to2

j=0 K=0 C[2,0] := C[1,0] + A[0, 0] * B [0,0]

K=1 C[2,0] := C[1,0] + A[0, 0] * B [1,0]

K=2 C[2,0] := C[1,0] + A[0, 0] * B [2,0]

j= 1 K=0 C[2,1] := C[1,1] + A[1, 0] * B [0,1]

K=1 C[2,1] := C[1,1] + A[1, 0] * B [1,1]

K=2 C[2,1] := C[1,1] + A[1, 0] * B [2,1]

j=2 K=0 C[2,2] := C[1,2] + A[1, 0] * B [0,2]

K=1 C[2,2] := C[1,2] + A[1, 0] * B [1,2]

K=2 C[2,2] := C[1,2] + A[1, 0] * B [2,2]

Cont’d

Complexity

 It is clear from the processing that sequential algorithm For

the 3 by 3 matrix case requires 27 multiplications.

 The complexity of this algorithm is clearly (n3).

Chain Matrix Multiply

 Suppose we wish to multiply a series of matrices

 A1A2A3…An

 In what order should the multiplication be done?

 A p × q matrix A can be multiplied with a q × r

matrix B

 The result will be a p × r matrix C

Chain Matrix Multiply
 Consider the case of 3 matrices:

 A1 is 5 × 4

 A2 is 4 × 6

 A3 is 6 × 2

 The multiplication can be carried out either as
 ((A1A2)A3) or

 (A1(A2A3))

 The cost of the two is
 ((A1A2)A3) = (5·4·6)+(5·6·2) = 180

 (A1(A2A3)) = (4·6·2)+(5·4·2) = 88

 There is considerable savings achieved even for this simple
example

Matrix Chain Multiplication Problem

 Given a sequence A1,A2,…,An and dimensions p0, p1, …, pn, where Ai is of
dimension pi-1 × pi, determine the order of multiplication that minimizes the
number of operations

 If there are n items, there are n-1 ways in which the outer most pair of
parenthesis can be placed
 (A1)(A2A3A4…An)

 or (A1A2)(A3A4…An)

 or (A1A2A3)(A4…An)

 …

 or (A1A2A3A4…An-1)(An)

 Matrix Chain-Product Algorithm

 Try all possible ways to parenthesize A=A0*A1*…*An-1

 Calculate number of ops for each one

 Pick the one that is best

Chain Matrix Multiply

 In what order should we multiply a series of matrices
A1A2A3…An?

 Matrix multiplication is an associative but not
commutative operation

 We are free to add parenthesis the above multiplication
but the order of matrices can not be changed

Matrix Chain Multiplication Problem

 Once we split just after the kth matrix, we create two
sub-lists to be parenthesized, one with k and other with
n-k matrices
 (A1A2A3…Ak)(Ak+1…An)

 Since these are independent choices, if there are L ways
of parenthesizing the left sublist and R ways to
parenthesize the right sublist, then the total is L · R

Matrix Chain Multiplication Problem

 This suggests the following recurrence for P(n), the different
ways of parenthesizing n items

 This is related to the famous function in combinatronics called
Catalan numbers

 Catalan numbers are related to the number of different binary
trees on n nodes

 Catalan number is given by the formula:

























 2if)()(

 1if1

)(1

1

nknPkP

n

nP n

k













n

n

n
nC

2

1

1
)(

Matrix Chain Multiplication-DP

 The dynamic programming solution involves breaking up the
problem into subproblems whose solutions can be combined to
solve the global problem

 Let Ai..j be the result of multiplying matrices i through j

 It is easy to see that Ai..j is a pi-1 x pj matrix

A3 A4 A5 A6 = A3..6

4×5 5×2 2×8 8×7 = 4×7

Matrix Chain Multiplication-DP

 At the highest level of parenthesization we multiply two matrices

 A1..n = A1..k Ak+1..n1 ≤ k ≤ n-1

 The question now is what is optimum value of k for the split and
how do we parenthesize the sub-chains A1..k Ak+1..n

 We cannot use divide and conquer because we do not know what
is the optimum k

 We will have to consider all possible values of k and take the best
of them

 We will apply this strategy to solve the sub-problems optimally

Dynamic Programming Formulation

 We will store the solutions to the subproblem in a table and build the

table bottom up

 For 1≤ i≤ j ≤ n, let m[i,j] denote the minimum number of

multiplications needed to compute Ai..j

 The optimum can be described by the following recursive formulation

Matrix Chain Multiplication-DP

 If i = j, there is only one matrix and thus m[i, i] = 0
(the diagonal entries)

 If i < j, then we are asking for the product Ai..j

 This can be split by considering each k, i≤k≤j, as Ai..k
times Ak+1..j

 The optimum time to compute Ai..k is m[i, k] and
optimum time for Ak+1..j is in m[k+1, j]

Matrix Chain Multiplication-DP

 Since Ai..k is a pi-1× pk matrix and Ak+1..j is pk × pj matrix, the

time to multiply them pi-1 × pk × pj

 This suggest the following recursive rule:

 m[i, i] = 0

 m[i, j] = mini≤k≤j(m[i, k] + m[k+1, j] + pi-1 pk pj)

Matrix Chain Multiplication-DP

 m[i, j]=mini≤k≤j(m[i, k] + m[k+1, j] + pi-1 pk pj)

 For a specific k, (Ai...Ak)(Ak+1…Aj)

=Ai.. Ak (m[i, k] multiplications)

=Ak+1...Aj (m[k+1, j] multiplications)

=Ai..j (pi-1pkpj multiplications)

 We do not want to calculate m entries recursively

 How should we proceed?

 We will fill m along diagonals

Matrix Chain Multiplication-DP

 Set all m[i, i] = 0 using the base condition

 Compute cost of multiplication of a sequence of 2 matrices

 These are

 m[1, 2], m[2, 3], m[3, 4], …, m[n-1, n]

 m[1,2], for example is

 m[1, 2] = m[1, 1] + m[2, 2] + p0 · p1 · p2

Matrix Chain Multiplication-DP

 For example, for m for product of 5 matrices at this stage would be

m[1,1] ←m[1,2]

↓

m[2,2] ←m[2,3]

↓

m[3,3] ←m[3,4]

↓

m[4,4] ←m[4,5]

↓

m[5,5]

Matrix Chain Multiplication-DP

 Next, we compute cost of multiplication for sequence

of three matrices.

 These are

 m[1,3], m[2,4], m[3,5], …, m[n-2, n]

 m[1,3], for example is














320

310

]3,3[]2,1[

]3,2[]1,1[
min]3,1[

pppmm

pppmm
m

Matrix Chain Multiplication-DP

 We repeat the process for sequence of four, five and

higher number of matrices

 The final result will end up in m[1,n]

 Let us go through an example. We want to find the

optimal multiplication order for

A1 · A2 · A3 · A4 · A5

(5×4) (4×6) (6×2) (2×7) (7×3)

Matrix Chain Multiplication-DP

1 2 3 4 5

1 0

2 0

3 0

4 0

5 0

Matrix Chain Multiplication-DP

m[1,2] = m[1,1] + m[2,2] + p0 · p1 · p2 = 0+0+5·4·6

=120

m[2,3] = m[2,2] + m[3,3] + p1· p2 · p3 = 0+0+4·6·2 = 48

m[3,4] = m[3,3] + m[4,4] + p2 · p3 · p4 = 0+0+6·2·7 =

84

m[4,5] = m[4,4] + m[5,5] + p3 · p4 · p5 = 0+0+2·7·3 =

42

Matrix Chain Multiplication-DP

1 2 3 4 5

1 0 120

2 0 48

3 0 84

4 0 42

5 0

Matrix Chain Multiplication-DP

m[1,3] = m[1,1] + m[2,3] + p0 · p1 · p2 = 0+48+5·4·2 = 88

m[1,3] = m[1,2] + m[3,3] + p0 · p2 · p3 = 120+0+5·6·2 = 180

minimum m[1,3] = 88 at k = 1

m[2,4] = m[2,2] + m[3,4] + p1 · p2 · p4 = 0+84+4·6·7 = 252

m[2,4] = m[2,3] + m[4,4] + p1 · p3 · p4 = 48+0+4·2·7 = 104

minimum m[2,4] = 104 at k = 3

m[3,5] = m[3,3] + m[4,5] + p2 · p3 · p5 = 0+42+6·2·3 = 78

m[3,5] = m[3,4] + m[5,5] + p2 · p4 · p5 = 84+0+6·7·3 = 210

minimum m[3,5] = 78 at k = 3

Matrix Chain Multiplication-DP

1 2 3 4 5

1 0 120 88

2 0 48 104

3 0 84 78

4 0 42

5 0

Matrix Chain Multiplication-DP

m[1,4] = m[1,1] + m[2,4] + p0 · p1 · p4 = 0+104+5·4·7 = 244

m[1,4] = m[1,2] + m[3,4] + p0 · p2 · p4 = 120+84+5·6·7 = 414

m[1,4] = m[1,3] + m[4,4] + p0 · p3 · p4 = 88+0+5·2·7 = 158

minimum m[1,4] = 158 at k = 3

m[2,5] = m[2,2] + m[3,5] + p1 · p2 · p5 = 0+78+4·6·3 = 150

m[2,5] = m[2,3] + m[4,5] + p1 · p3 · p5 = 48+42+4·2·3 = 114

m[2,5] = m[2,4] + m[5,5] + p1 · p4 · p5 = 104+0+4·7·3 = 188

minimum m[2,5] = 114 at k = 3

Matrix Chain Multiplication-DP

1 2 3 4 5

1 0 120 88 158

2 0 48 104 114

3 0 84 78

4 0 42

5 0

Matrix Chain Multiplication-DP

m[1,5] = m[1,1] + m[2,5] + p0 · p1 · p5 = 0+114+5·4·3 = 174

m[1,5] = m[1,2] + m[3,5] + p0 · p2 · p5 = 120+78+5·6·3 = 288

m[1,5] = m[1,3] + m[4,5] + p0 · p3 · p5 = 88+42+5·2·3 = 160

m[1,5] = m[1,4] + m[5,5] + p0 · p4 · p5 = 158+0+5·7·3 = 263

minimum m[1,5] = 160 at k = 3

Matrix Chain Multiplication-DP

1 2 3 4 5

1 0 120 88 158 160

2 0 0 48 104 114

3 0 0 0 84 78

4 0 0 0 0 42

5 0 0 0 0 0

Order of Calculation of m entries

1 2 3 4 5

1 0 1 5 8 10

2 0 2 6 9

3 0 3 7

4 0 4

5 0

Split k values

1 2 3 4 5

1 0 1 1 3 3

2 0 2 3 3

3 0 3 3

4 0 4

5 0

Matrix Chain Multiplication-DP

A1

A2 A3

2 A4 A5

1 4

3

Optimal order for multiplication: ((A1(A2A3))(A4A5))

Chain Matrix Multiplication Algorithm

MATRIXCHAIN(p, N)

for i = 1 to N do m[i,i]←0

for L = 2 to N do

for i=1 to N-L+1 do

j ←i+L-1

m[i,j] ←∞

for k=1 to j-1 do

t ← m[i,k]+m[k+1,j]+pi-1+pk+pj

if (t<m[i,j]) then

m[i,j] ←t

s[i,j] ←k

Analysis of Chain Matrix Multiplication

 There are three nested loops

 Each loop executes a maximum n times

 Total time is thus Ө(n3)

 Extracting the final sequence we use MULTIPLY algorithm

 MULTIPLY(i,j) Algorithm
if (i=j) then return A[i]

else k ←s[i,j]

X ← MULTIPLY(i,k)

Y ← MULTIPLY(k+1,j)

return X · Y

0/1 Knapsack

 Given: A set S of n items, with each item i having
 vi - a positive value (benefit)

 wi - a positive weight

 Goal: Choose items with maximum total benefit but with weight at
most W.

Example

Weight:

Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

20 3 6 25 80

Items:

9 in

Solution:
• 5 (2 in)
• 3 (2 in)
• 1 (4 in)

“knapsack”

http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg
http://loki.cs.brown.edu:8081/webae/images/cover-large.jpg

0/1 Knapsack

 Given a knapsack with maximum capacity W, and a set S

consisting of n items

 Each item I has some weight wi and value vi (all wi, vi

and W are integer values)

 Problem: How to pack the knapsack to achieve

maximum total value of packed items?

Example 0/1 Knapsack Problem

Itemi Weight wi Value vi

1 2 3

2 3 4

3 4 5

4 5 8

5 9 10

Knapsack can hold W=20

0/1 Knapsack

 Mathematically, the problem is

 The problem is called a “0-1” problem, because each

item must be entirely accepted or rejected

ww

v

Ti

i

Ti

i









 tosubjected

 maximize

0/1 Knapsack Problem
 Try the brute-force solution

 Since there are n items, there are 2n possible combinations of the items (an
item either chosen or not)

 We go through all combinations and find the one with the most total value
and with total weight less or equal to W

 Running time will be O(2n)

 Can we do better?

 Yes, with an algorithm based on dynamic programming

 We need to carefully identify the subproblems

0/1 Knapsack Problem
 Let us try this

 If items are labeled 1,2, …, n, then a subproblem would be to
find an optimal solution for Sk = items labeled 1,2,…, k

 This is a valid subproblem definition

 The question is:

 Can we describe the final solution Sn in terms of subproblems Sk?

 Unfortunately we cannot do that

Example

 Solution S4

 Items chosen are 1,2,3,4

 Total weight:

2+3+4+5=14

 Total value:

3+4+5+8=20

Itemi Weight wi Value vi

1 2 3

2 3 4

3 4 5

4 5 8

5 9 10

Example

 Solution S5

 Items chosen are 1,3,4,5

 Total weight: 2+4+5+9=20

 Total value: 3+5+8+10=26

 S4 is not part of S5

 The solution S4 is not part of the

solution S5

 So our definition of a subproblem is

flawed and we need another one

Itemi Weight wi Value vi

1 2 3

2 3 4

3 4 5

4 5 8

5 9 10

0/1 Knapsack Problem-DP

 The Dynamic Programming Approach

 For each i ≤ n and each w ≤ W, solve the knapsack problem for

the first i objects when the capacity of knapsack is W.

 Why will this work?

 Because solution to larger subproblems can be built up easily

from solutions to smaller ones

0/1 Knapsack Problem-DP
 We construct a matrix V[0..n, 0..W]

 For 1≤i≤n and 0≤j≤W, V[i,j] will store the maximum value
of any set of objects {1,2,…,i} that can fit into a knapsack of
weight j

 V[n,W] will contain the maximum value of all n objects that
can fit into the entire knapsack of weight W

0/1 Knapsack Problem-DP

 To compute entries of V we will imply an inductive approach

 As a basis, V[0,j]=0 for 0≤j≤W since if we have no items

then we have no value

 We consider two cases

The 0/1 Knapsack Problem

 Leave object i

 If we choose to not take object i, then the optimal value will

come about by considering how to fill a knapsack of size j with

the remaining objects {1,2,…,i-1}

 This is just V[i-1,j]

The 0/1 Knapsack Problem

 Take object i

 If we take object i, then we gain a value of vi

 But we use up wi of our capacity

 With the remaining j-wi capacity in the knapsack, we can fill it

in the best possible way with objects {1,2,…,i-1}

 This is vi+V[i-1,j-wi]

 This is only possible if wi≤j

0/1 Knapsack

 Recursive formulation

 A simple evaluation of this recursive definition is

exponential

  
















jwwjiVvjiV

jwjiV
jiV

jjV

jjiV

iii

i

 if],1[],,1[max

 if],1[
],[

0if0],0[

0if],[

0/1 Knapsack

 So, as usual, we avoid re-computation by making a table

 Consider an example: max weight W is 11.

 There are five items to choose from

0/1 Knapsack:DP

111111111110

777777777610

2525252524191877610

4020202924221877610

W5=7, v5=28

W4=6, v4=22

W3=5, v3=18

W2=2, v2=6

W1=1, v1=1

11109876543210Weight limit (j)

4035342924221877610

The [i,j] entry here will be V[i,j], the best value obtainable
using the first i rows of terms if the maximum capacity were j

0/1 Knapsack: DP Algorithm
KNAPSACK(n, W)

for w ← 0 to W do V[0,W] ← 0

for i ← 0 to n do V[i,0] ← 0

for w ← 0 to W do

if (wi ≤ w AND vi + V[i-1,w-wi] > V[i-1,w]) then

V[i,w] ← vi+V[i-1,w-wi]

else

V[i,w] ← V[i-1,w]

Time Complexity: clearly O(n·W)

