
Analysis of Algorithm

Lecture-04: Merge Sort and Selection Problem
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Sorting

 Sorting is a well studied problem from analysis point of 
view

 Sorting is one of few problems where provable lower 
bounds exist on how fast we can sort

 In sorting we are given an array A[1..n] of n numbers

 We are to reorder these elements into increasing (or 
decreasing) order
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Divide-and-Conquer

 The Divide-and-Conquer strategy is employed to solve large 
number of computational problems.

 Divide: the problem into a small number to pieces.

 Conquer: solve each piece by applying divide and conquer to it 
recursively.

 Combine: the pieces together into a global solution.
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Merge Sort

 Divide: Split A down the middle into two subsequences, each 

of size roughly n/2

 Conquer: Sort each subsequence by calling merge sort 

recursively on each

 Combine: Merge the two sorted subsequences into a single 

sorted list.
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Merge Sort

 The dividing process ends when we have split the 

subsequences down to a single item.

 A sequence of length 1 is trivially sorted.
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Merge Sort (split)

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

split
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Merge Sort (merge)

0 1 2 3 4 5 6 7

2 4 5 7 0 1 3 6

5 7 2 4 1 6 0 3

7 5 2 4 1 6 3 0

merge
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MERGE-SORT Algorithm

MERGE-SORT(array A, int p, int r)

if (p < r) then

q ←(p+r)/2

MERGE-SORT(A, p, q)

MERGE-SORT(A, q+1, r)

MERGE(A, p, q, r)
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MERGE Algorithm

MERGE(array A, int p, int q, int r)

int B[p..r]; int i ← k ← p; int j ← q+1;

while (i ≤ q) and (j ≤ r)

do 

if (A[i] < A[j]) then 

B[k++] ← A[i++];

else 

B[k++] ← A[j++];

while (i ≤ q) do B[k++] ← A[i++];

while (j ≤ r) do B[k++] ← A[j++];

for i ← p to r do  A[i] ← B[i];
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Logarithmic identities

 

0)1(log

1)(log

)(log
log

)(log)(log

)(log)(loglog

)(log)(log)(log

 ifonly  and if )(log

)log()log(
























b

b

xy

by

b

b

y

b

bbb

bbb

y

b

b

yx

y

x
x

xyx

yx
y

x

yxxy

bxxy



11

Analysis of Merge Sort
 First consider the running time of procedure MERGE(A, p, q, r).

 Let n = r – p + 1 denote the total length of both left and right sub 
arrays, i.e. sorted pieces.

 The MERGE procedure contains four loops, none nested in the 
other.

 Each loop can execute at most n times.

 Let T(n) denote the worst case running time of MERGE-SORT on 
an array of length n.

 If we call MERGE-SORT with an array containing a single item (n 
= 1) then the running time is constant.

 We can just write T(n) = 1, ignoring all constants.
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Analysis of Merge Sort (cont’d)

 For n > 1 MERGE-SORT Splits into two halves, sorts the two 

and then merges them together.

 The left half is of size              and the right half is 

 How long does it take to sort the elements in sub array of size 

 We do not know this,              but because,

we can express this as 

 2/n  2/n

 2/n
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Analysis of Merge Sort (cont’d)

 Similarly the time taken to sort right sub array is 
expressed as

 In conclusion we have 

 This is called recurrence relation i.e. a recursively 
defined function.
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Solving the Recurrence

 Lets expand the terms
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Solving the Recurrence (cont’d)

 What is the pattern here?

 Let’s consider the ratio of T(n)/n for powers of 2

 This suggests T(n)/n = log n + 1
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Solving the Recurrence (cont’d)

 Floor and ceiling are difficult to deal with

 If n is assumed to be a power of 2 (2k = n) this will 
simplify the recurrence to
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The Iteration Method
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The Iteration Method (cont’d)

 If n is power of 2 then let n = 2k or k=log n.
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MERGE-SORT Recursion tree
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Example-1: Solving Recurrence

• Assume n to be power of 4 i.e. n = 4k and k = log4 n
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Example-1: Solving Recurrence (cont’d)

 Iteration Method
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Example-1: Solving Recurrence (cont’d)
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Example-1: Solving Recurrence (cont’d)
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Example-1: Solving Recurrence (cont’d)
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Example-1: Solving Recurrence (cont’d)

)(343log34)(

result!  thehavefinally   we,79.03logwith 

34

44

)(4
1

)(4

4/1

1/)(

4/1

4/1

1)4/3(

1

)(

get  weback,  thisplug  weif

79.0

4

4

3log

3log3log

3log3log
3log

3log
3log

3log
3log

3log

3log
3log

3log

3log

4

44

44

4

4

4

4

4

4

4

4

4

4

nnnnnnT

nn

nnn

nnn
nn

n
nn

n
nn

n

nn
n

n

n

nnnT






































Example-2: Solving Recurrence
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Example-3: Solving Recurrence
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Example-4: Solving Recurrence
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Example-5: Solving Recurrence
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Selection Problem

 Suppose you have a series of numbers

 5, 7, 2, 10, 8, 15, 21, 37, 41

 How many numbers are smaller than 10

 Rank of a number is the position of number in sorted sequence

 To find the rank of all number we can write O(n2) algorithm.

 We can sort the numbers

 Sorting takes O(n log n).

 Left to right scanning of array is O(n).

Pos 1 2 3 4 5 6 7 8 9

Num 2 5 7 8 10 15 21 37 41
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Median

 Median is the middle rank number in a list of number.

 Median is of particular interest in statistics.

 Medians are useful as a measure of central tendency of a 
set especially when the distribution of values is highly 
skewed.

 For example, the median income in a community is 
more meaningful measure than average.
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Median (cont’d)

 Suppose 7 households have monthly incomes 5000, 

7000, 2000, 10000, 8000, 15000 and 16000

 In sorted order incomes are 2000, 5000, 7000, 8000, 

10000, 15000, 16000

 The Median income is 8000; median is element with 

rank 4: (7+1)/2=4

 The average income is 9000
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Median (cont’d)

 Suppose the income 16000 goes up to 450,000

 The median is still 8000, but the average goes up to 71000

 Clearly the average is not good representative of the majority 

of income levels.
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Medians & Selection -Sieve Technique

 We will use a variation of divide and conquer strategy called sieve 
technique.

 In divide & conquer, we break the problem into a small number of 
smaller subproblems which we solve recursively.

 In Selection Problem we are looking for an item.

 We will divide the problem into subproblems.

 However we will discard those smaller subproblems for which we 
determine that they do not contain the desired answer (the 
variation).
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Medians & Selection -Sieve Technique (cont’d)

 Here is how the sieve technique will be applied to the selection 

problem

 We will begin with the given array A[1..n]

 We will pick an item from the array, called the pivot element 

which we will denote by x.

 For now just think of pivot element as a random element of A.
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Medians & Selection -Sieve Technique (cont’d)

 We partition A into three parts

1. A[q] contains the pivot element x.

2. A[1..q-1] will contain all the elements that are less than x

3. A[q+1..n] will contain all the elements that are greater than x

 Within each sub-array the items may appear in any order.
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Medians & Selection -Sieve Technique (cont’d)

5 9 2 6 4 1 3 7

p r

pivot

3 1 2 4 6 9 5 7

p rq

Partition
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Medians & Selection -Sieve Technique (cont’d)

 The rank of the pivot x is 

 q – p + 1 in A[p..r]

 Let rank_x = q – p + 1

 If k = rank_x then the pivot is kth smallest.

 If k < rank_x then search A[p..q-1] recursively

 If k > rank_x then search A[q+1..r] recursively. Find 

element of rank (k-q) because we eliminated q smaller 

elements in A.
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SELECT Algorithm
SELECT(array A, int p, int r, int k)

if (p = r) then return A[p]

else x ← CHOOSE_PIVOT(A, p, r)

q ← PARTITION(A, p, r, x)

rank_x ← q – p + 1

if k = rank_x then return x

if k < rank_x then return SELECT(A, p, q-1, k)

else return SELECT(A, q+1, r, k-q)
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Example: SELECT Algorithm

 Select the 6th smallest element of the set {5, 9, 2, 6, 4, 1, 3, 7}

5

9

2

6

4

1

3

7

3

1

2

4

6

9

5

7

6

9

5

7

6

5

7

9

6

5

5

6

k = 6 pivot = 4

k = 6-4=2 pivot = 7

k = 2 pivot=6

rank_x = 4

rank_x = 3 rank_x = 2

Recur Partition

Recur Partition

Recur Partition
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Analysis of SELECT Algorithm
 For the moment, we will assume that partitioning and pivot 

both take Θ(n) time

 How many elements do we eliminate each time?

 If x is the smallest or the largest then we may only succeed in 

eliminating one element
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Analysis of SELECT Algorithm (cont’d)

 Ideally, x should have a rank that is neither too large or too 

small

5 9 2 6 4 1 3 7

1 5 9 2 6 4 3 7

Pivot is 1

After partitioning
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Analysis of SELECT Algorithm (cont’d)

 Suppose we are able too choose a pivot that causes exactly half of 

the array to be eliminated in each phase

 This means that we recurse on the remaining n/2 elements

 This leads to the following recurrence
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Analysis of SELECT Algorithm (cont’d)

 If we expand this recurrence we get
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Analysis of SELECT Algorithm (cont’d)

 Recall the formula for infinite geometric series; for any 

|c| < 1,
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Analysis of SELECT Algorithm (cont’d)

 Lets think about how we ended up with a Θ(n) algorithm for

selection

 Normally a Θ(n) algorithm would make a single or perhaps a

constant number of passes of the data set

 In this algorithm we make a number of passes. In fact it could be as

many as log n

 However, because we eliminate a constant fraction of the array

with each phase, we get the convergent geometric series in the

analysis.


