Analysis of Algorithm
Lecture-04: Merge Sort and Selection Problem

Sorting

® Sorting is a well studied problem from analysis point of
view
® Sorting is one of tew problems where provable lower

bounds exist on how fast we can sort

® In sorting we are given an array A[1..n] of n numbers

® We are to reorder these elements into increasing (or
decreasing) order

Divide-and-Conquer

® The Divide-and-Conquer strategy is employed to solve large
number of computational problems.
® Divide: the problem into a small number to pieces.

® Conquer: solve each piece by applying divide and conquer to it
recursively.

® Combine: the pieces together into a global solution.

Merge Sort

* Divide: Split A down the middle into two subsequences, each

of size roughly n/2

® Conquer: Sort each subsequence by calling merge sort

recursively on each

e Combine: Merge the two sorted subsequences into a single

sorted list.

Merge Sort

e The dividing process ends when we have split the

subsequences down to a single item.

* A sequence of length 1 is trivially sorted.

Merge Sort (split)

spI|t

6

- /

Merge Sort (merge)

merge

7

_ /

MERGE-SORT Algorithm

MERGE-SORT(array A, int p, int r)
if (p < r) then
q —(p+r)/2
MERGE-SORT(A, p, q)
MERGE-SORT(A, gq+1, r)
MERGE(A, p, q, 1)

MERGE Algorithm

MERGE(array A, int p, int g, intr)
int B[p..r]; inti —« k < p;intj < gq+1;
while i< g)and (j <)
do

if (A[i] < A[j]) then
Blk++] < Ali++];
else
Blk++] — A[j++];
while (i < q) do Blk++] < Ali++];
while (j < r) do B[k++] « A[j++];
fori — ptordo Ali]l < BIil;

10

Logarithmic identities

y =log, (x)if and only if x=b’
log,, (xy) = log,, (x) +log,,(y)

Iog b(gj = Iog b (X) - Iog b (Y)

log, (x*) = ylog, (x)
o 3] 20:00

X1090) — y/1o9(0)

log b(b) =1
log b(l) =0

11

Analysis of Merge Sort

First consider the running time of procedure MERGE(A, p, q, r).

Letn =r—p + 1 denote the total length of both left and right sub
arrays, i.e. sorted pieces.

The MERGE procedure contains four loops, none nested in the
other.

Each loop can execute at most n times.

LetT(n) denote the worst case running time of MERGE-SORT on
an array of length n.

If we call MERGE-SORT with an array containing a Single item (n
= 1) then the running time is constant.

We can just write T(n) = 1, ignoring all constants.

12

Analysis of Merge Sort (cont’d)

® For n > 1 MERGE-SORT Splits into two halves, sorts the two

and then merges them together.
* The left half s of size[n/ 2] and the right halfis |N/2]

e How long does it take to sort the elements in sub array of size

* We do not know this, I_n / 2—| but because,
n/2|<n for n>1

WwWE Can €Xp1”€SS this as

T(n/2)

13

Analysis of Merge Sort (cont’d)

o Similarly the time taken to sort right sub array is

expressed as T (Ln / ZJ)

® In conclusion we have

e A

1 f n=1

1= iT (n/2)+T(n/2)+n otherwise

® This is called recurrence relationi.e. a recursively
defined function.

14

Solving the Recurrence

® [ets expand the terms

TQ =1
TR2)=TQO+TQ)+2=1+1+2=4
TQR)=TR)+TQ)+3=4+1+3=8
TA)=T2)+T(2)+4=8+8+4=12
TOB)=T@B)+T(2)+5=8+4+5=17

TB8)=TA4)+T(4)+8=12+12+8=32
T(16)=T@B)+T(8)+16=32+32+16=80

T(32)=T(16)+T(16)+32=80+80+32 =192

15

Solving the Recurrence (cont’d)

e What is the pattern here?

® Let’s consider the ratio of T(n)/n for powers of 2

T@Q)/1=1
T(2)/2=2
T(4)/4=3
T(8)/8=4
T(16)/16=5
T(32)/32=6
e This suggests T(N)/n =logn +1

16

Solving the Recurrence (cont’'d)

¢ Floor and ceiling are difficult to deal with

® If n is assumed to be a power of 2 (2 = N) this will
simplify the recurrence to

- 3

1 If n=1
T(n) =+« o
2T(n/2)+n otherwise

The Iteration Method

T(nN)=2T(n/2)+n
=2(2T(n/4)+n/2)+n
=4T(n/4)+n+n
=4(2T(n/8)+n/4)+n+n
=8T(n/8)+n+n+n
=8(2T(n/16)+n/8)+n+n+n
=16T(n/16)+Nn+n+n+n

17

The lteration Method (cont’'d)

® If nis power of 2 then let n = 2k or kzlog n.

T(N)=2T(/(2)+(n+n+n+...+n)
\k times)
v

— 2T (n/(2)) + kn

= 209" (n /(2"°9)) + (log n)n
=219"T (n/n) + (log n)n
=nT(1)+nlogn=n+nlogn

18

-

MERGE-SORT Recursion tree

RN

Time to merge \

/ =n+2(n/2)
n/4 n/4 =n+4(n/4)
n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8 =N+ 8(n / 8)
| 3 4 | 3 <4 | 3 | 3 <4 | 3 4 | 3 <4 | 3 | 3 4
(2111111 (a2 af|affaf|1 11 1] =n
19 =n(log(n)+1)

J

Levels

Log(n)+1

Example-1: Solving Recurrence
° Assume n to be power of 4i.e.n = 4% and k = log4 n

é)

1 if n=1
T(Nn) =< Cp
3T (n/4)+n otherwise

20

21

Example-1: Solving Recurrence (cont’d)

® Jteration Method

T(n)=3T(n/4)+n
=3(3T(n/16))+(n/4)) +n
=9T(n/16)+3(n/4)+n
=27T(n/64)+9(n/16)+3(n/4)+n

22

Example-1: Solving Recurrence (cont’d)

T(n) = 3kT(41k) 34N/ 4 ... +9(n/16) +3(n/ 4) +n

T =3T(M+3 2
n)= —)+ —N
4 ;'4'
With n=4% and T(1) =1
(Iog4n)—13i

T(M=3"TM+), ik

23

Example-1: Solving Recurrence (cont’d)

n remains constant

throughout the sum and 3'/4' =(3/4)';
we thus have

g lewmrgy
T(n)=n"%+n » 7

=0

log, n log, a

we used the formula a =N

(logyn)-1 /7 o\l
The sum Z (Zj IS a geometric series;
i=0

for x #1

m Xm+1 _1
X, =
i—0 x—1

24

Example-1: Solving Recurrence (cont’d)

Inthis case x=3/4and m=log,n-1
We get
(3/ 4) (log, n)—1+1 _1
+n
(3/4)-1
Applying the log identity once more
(3/4)Iog4n _ nIog4(3/4) _ nIog43—log44

T(n) =n'o%3

log, 3
_ nIog43—1 _ n

n

25

Example-1: Solving Recurrence (cont’d)

if we plug this back, we get
nIog43

-1

T(n)=n"%34+n0

(3/4)-1
_ Iog43+nlog43_n
~1/4
_ plos:3 %3 _n _ Iog43_|_(nlog43_n)/1:nlog43+4(nI0943_n) :nlog43+4(_nlog43+n)
~1/4 ~1/4 -1
= 4n —4n'°%3 4 n'0%3
= 4n—3n'°%3

with log, 3~ 0.79, we finally have the result!
T(n)=4n-3nlog,3~4n-3n"" e O(n)

26

Example-2: Solving Recurrence

f(n) =f(n-1) + n
=f(n-2)+n-1+n
=f(n-3)+n-2+n-1+n
=fn-4)+n-3+n-2+n-1+n

=f(1)+2+3+4+..+n-1+n
- n(n+1)
2

=O(n*)

Example-3: Solving Recurrence

f(n) = f(n/2) + 1
=f(n/4) +1+1
=f(n/8) +1+1+1
=f(n/16) +1+1+1+1

=f(nn)+1+1+ .. +1
= log,n
= 0(log n)

27

-

Example-4: Solving Recurrence

f(n)=2f(n/2)+1
=2(2f(n/4)+1)+1
=4f(n/4)+2+1
=4(2f(n/8)+1)+2+1
=8f(n/8)+4+2+1
=8(2f(n/2)+1)+4+2+1
=16f(n/16)+8+4+2+1

=nf(n/n)+n/2+..+8+4+2+1
logn X(n+1) ~1 2(Iogn+1) 1
= 2I = =
; X—1 2-1
20wy 2-1 nl¥42-1 n+2-1

= =0O(Nn
2-1 2-1 2-1 ("

29

Example-5: Solving Recurrence

f(n)=f(n/2)+n
=f(n/4)+n/2+n

= f(n/8)+n/4+n/2+n

= f(n/16)+n/8+n/ 4+ n/ 2+n

= f(n/n)+2+4+ ...+ n/8+n/ 4+n/ 2+n

= 1+2+4 + ...+ n/8+n/4+n/2+n
logn logn 1

n
i=0 i=0
this is a decreasing series, so

> 1 g Ic| <1

~" "1-¢
using this we have c=1/2
=1 1 1 1
=2 1-c¢c 1-(1/2) 1/2
T(N)<2neB(n)

30

Selection Problem

® Suppose you have a series of numbers
¢ 5.7,2,10,8, 15,21, 37, 41
* How many numbers are smaller than 10
* Rank of a number is the position of number in sorted sequence
* To find the rank of all number we can write O(n?) algorithm.

e We can sort the numbers

Pos 1 2 3 4 5 6 7 8

Num 2 5 7 8 10 15 21 37

41

® Sorting takes O(n log n).

® Left to right scanning of array is O(n).

31

Median

® Median is the middle rank number in a list of number.
® Median is of particular interest in statistics.

® Medians are useful as a measure of central tendency of a
set especially when the distribution of values is highly
skewed.

* For example, the median income in a community is

more meaningful measure than average.

32

Median (cont’d)
® Suppose 7 households have monthly incomes 5000,
7000, 2000, 10000, 8000, 15000 and 16000

® In sorted order incomes are 2000, 5000, 7000, 8000,
10000, 15000, 16000

® The Median income is 8000; median is element with

rank 4: (7+1)/2=4

® The average income is 9000

Median (cont'd)

® Suppose the income 16000 goes up to 450,000
® The median is still 8000, but the average goes up to 71000

® Clearly the average is not good representative of the majority

of income levels.

33

34

Medians & Selection -Sieve Technique

We will use a variation of divide and conquer strategy called sieve

te chnique :

In divide & conquer, we break the problem into a small number of
smaller subproblems which we solve recursively.

In Selection Problem we are looking for an item.
We will divide the problem into subproblems.

However we will discard those smaller subproblems for which we
determine that they do not contain the desired answer (the

variation).

Medians & Selection -Sieve Technique (cont’d)

® Here is how the sieve technique will be applied to the selection
problem
* We will begin with the given array A[1..n]

® We will pick an item from the array, called the pivot element

which we will denote by X.

® For now just think of pivot element as a random element of A.

35

Medians & Selection -Sieve Technique (cont’d)

© We partition A into three parts

1.A
2.A
3.A

q] contains the pivot element x.

1..q-1] will contain all the elements that are less than x

(qt1..n] will contain all the elements that are greater than x

o Within each sub—array the items may appear in any order.

36

37

Medians & Selection -Sieve Technique (cont’d)
pivot

|
592 61 3 | 7

p

38

Medians & Selection -Sieve Technique (cont’d)

® The rank of the pivot x is
®*q—pt linAlp..r]
® Letrank x =q—p t 1
* If k = rank_x then the pivot is k" smallest.
* If k <rank_x then search A[p..q-1] recursively

® If k > rank_x then search A[q+1..r] recursively. Find
element of rank (k-q) because we eliminated q smaller

elements in A.

39

SELECT Algorithm

SELECT(array A, int p, intr, int k)
if (p = r) then return A[p]
else x — CHOOSE_PIVOT(A, p, 1)
g — PARTITION(A, p, r, X)
rank_x <« q-p + 1
if k = rank_x then return x
if k < rank_x then return SELECT(A, p, g-1, k)
else return SELECT(A, g+1, r, k-q)

40

Example: SELECT Algorithm

* Select the 6™ smallest element of the set {5,9,2,6,4,1, 3,7}

rank_x = 4

41

Analysis of SELECT Algorithm

® For the moment, we will assume that partitioning and pivot

both take ®(n) time
* How many elements do we eliminate each time?

e [f x is the smallest or the largest then we may only succeed in
eliminating one element

Analysis of SELECT Algorithm (cont’d)

5[ef2]6 43 7 Pivot is 1

After partitioning

® Ideally, x should have a rank that is neither too large or too

small

42

Analysis of SELECT Algorithm (cont’d)

® Suppose we are able too choose a pivot that causes exactly half of

the array to be eliminated in each phase
¢ This means that we recurse on the remaining n/2 elements

e This leads to the following recurrence

e D

1 it n=1
T(n)=- .0
T(nl2)+n otherwise

43

Analysis of SELECT Algorithm (cont’d)

o [f we expand this recurrence we get

Analysis of SELECT Algorithm (cont’d)

* Recall the formula for infinite geometric series; for any
[c| <1,

ol
;C 1-c

using this we have

= 1 1 1 1
2" 1-c 1-(1/2) 1/2
T(n)<2ne®(n)

45

46

Analysis of SELECT Algorithm (cont’d)

* Lets think about how we ended up with a O(n) algorithm for

selection

* Normally a ®(n) algorithm would make a single or perhaps a

constant number of passes of the data set

® In this algorithm we make a number of passes. In fact it could be as

many as log n

* However, because we eliminate a constant fraction of the array
with each phase, we get the convergent geometric series in the

analysis.

