
Analysis of Algorithm

Lecture-04: Merge Sort and Selection Problem
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Sorting

 Sorting is a well studied problem from analysis point of 
view

 Sorting is one of few problems where provable lower 
bounds exist on how fast we can sort

 In sorting we are given an array A[1..n] of n numbers

 We are to reorder these elements into increasing (or 
decreasing) order
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Divide-and-Conquer

 The Divide-and-Conquer strategy is employed to solve large 
number of computational problems.

 Divide: the problem into a small number to pieces.

 Conquer: solve each piece by applying divide and conquer to it 
recursively.

 Combine: the pieces together into a global solution.
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Merge Sort

 Divide: Split A down the middle into two subsequences, each 

of size roughly n/2

 Conquer: Sort each subsequence by calling merge sort 

recursively on each

 Combine: Merge the two sorted subsequences into a single 

sorted list.
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Merge Sort

 The dividing process ends when we have split the 

subsequences down to a single item.

 A sequence of length 1 is trivially sorted.
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Merge Sort (split)

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

split
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Merge Sort (merge)

0 1 2 3 4 5 6 7

2 4 5 7 0 1 3 6

5 7 2 4 1 6 0 3

7 5 2 4 1 6 3 0

merge
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MERGE-SORT Algorithm

MERGE-SORT(array A, int p, int r)

if (p < r) then

q ←(p+r)/2

MERGE-SORT(A, p, q)

MERGE-SORT(A, q+1, r)

MERGE(A, p, q, r)
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MERGE Algorithm

MERGE(array A, int p, int q, int r)

int B[p..r]; int i ← k ← p; int j ← q+1;

while (i ≤ q) and (j ≤ r)

do 

if (A[i] < A[j]) then 

B[k++] ← A[i++];

else 

B[k++] ← A[j++];

while (i ≤ q) do B[k++] ← A[i++];

while (j ≤ r) do B[k++] ← A[j++];

for i ← p to r do  A[i] ← B[i];
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Logarithmic identities
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Analysis of Merge Sort
 First consider the running time of procedure MERGE(A, p, q, r).

 Let n = r – p + 1 denote the total length of both left and right sub 
arrays, i.e. sorted pieces.

 The MERGE procedure contains four loops, none nested in the 
other.

 Each loop can execute at most n times.

 Let T(n) denote the worst case running time of MERGE-SORT on 
an array of length n.

 If we call MERGE-SORT with an array containing a single item (n 
= 1) then the running time is constant.

 We can just write T(n) = 1, ignoring all constants.
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Analysis of Merge Sort (cont’d)

 For n > 1 MERGE-SORT Splits into two halves, sorts the two 

and then merges them together.

 The left half is of size              and the right half is 

 How long does it take to sort the elements in sub array of size 

 We do not know this,              but because,

we can express this as 
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Analysis of Merge Sort (cont’d)

 Similarly the time taken to sort right sub array is 
expressed as

 In conclusion we have 

 This is called recurrence relation i.e. a recursively 
defined function.
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Solving the Recurrence

 Lets expand the terms
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Solving the Recurrence (cont’d)

 What is the pattern here?

 Let’s consider the ratio of T(n)/n for powers of 2

 This suggests T(n)/n = log n + 1
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Solving the Recurrence (cont’d)

 Floor and ceiling are difficult to deal with

 If n is assumed to be a power of 2 (2k = n) this will 
simplify the recurrence to
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The Iteration Method
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The Iteration Method (cont’d)

 If n is power of 2 then let n = 2k or k=log n.
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MERGE-SORT Recursion tree
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Example-1: Solving Recurrence

• Assume n to be power of 4 i.e. n = 4k and k = log4 n
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Example-1: Solving Recurrence (cont’d)

 Iteration Method
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Example-1: Solving Recurrence (cont’d)
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Example-1: Solving Recurrence (cont’d)
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Example-1: Solving Recurrence (cont’d)
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Example-1: Solving Recurrence (cont’d)
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Example-2: Solving Recurrence
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Example-3: Solving Recurrence

27

n)(= 

n= 

 + … +  +  = f(n/n) +

…

 +  +  + ) + = f(n/

 +  + ) + = f(n/

 + ) + = f(n/

) + /f(n) = f(n

log

log

111

111116

1118

114

12

2





Example-4: Solving Recurrence
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Example-5: Solving Recurrence
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Selection Problem

 Suppose you have a series of numbers

 5, 7, 2, 10, 8, 15, 21, 37, 41

 How many numbers are smaller than 10

 Rank of a number is the position of number in sorted sequence

 To find the rank of all number we can write O(n2) algorithm.

 We can sort the numbers

 Sorting takes O(n log n).

 Left to right scanning of array is O(n).

Pos 1 2 3 4 5 6 7 8 9

Num 2 5 7 8 10 15 21 37 41
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Median

 Median is the middle rank number in a list of number.

 Median is of particular interest in statistics.

 Medians are useful as a measure of central tendency of a 
set especially when the distribution of values is highly 
skewed.

 For example, the median income in a community is 
more meaningful measure than average.
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Median (cont’d)

 Suppose 7 households have monthly incomes 5000, 

7000, 2000, 10000, 8000, 15000 and 16000

 In sorted order incomes are 2000, 5000, 7000, 8000, 

10000, 15000, 16000

 The Median income is 8000; median is element with 

rank 4: (7+1)/2=4

 The average income is 9000
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Median (cont’d)

 Suppose the income 16000 goes up to 450,000

 The median is still 8000, but the average goes up to 71000

 Clearly the average is not good representative of the majority 

of income levels.
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Medians & Selection -Sieve Technique

 We will use a variation of divide and conquer strategy called sieve 
technique.

 In divide & conquer, we break the problem into a small number of 
smaller subproblems which we solve recursively.

 In Selection Problem we are looking for an item.

 We will divide the problem into subproblems.

 However we will discard those smaller subproblems for which we 
determine that they do not contain the desired answer (the 
variation).
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Medians & Selection -Sieve Technique (cont’d)

 Here is how the sieve technique will be applied to the selection 

problem

 We will begin with the given array A[1..n]

 We will pick an item from the array, called the pivot element 

which we will denote by x.

 For now just think of pivot element as a random element of A.
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Medians & Selection -Sieve Technique (cont’d)

 We partition A into three parts

1. A[q] contains the pivot element x.

2. A[1..q-1] will contain all the elements that are less than x

3. A[q+1..n] will contain all the elements that are greater than x

 Within each sub-array the items may appear in any order.
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Medians & Selection -Sieve Technique (cont’d)

5 9 2 6 4 1 3 7

p r

pivot

3 1 2 4 6 9 5 7

p rq

Partition
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Medians & Selection -Sieve Technique (cont’d)

 The rank of the pivot x is 

 q – p + 1 in A[p..r]

 Let rank_x = q – p + 1

 If k = rank_x then the pivot is kth smallest.

 If k < rank_x then search A[p..q-1] recursively

 If k > rank_x then search A[q+1..r] recursively. Find 

element of rank (k-q) because we eliminated q smaller 

elements in A.
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SELECT Algorithm
SELECT(array A, int p, int r, int k)

if (p = r) then return A[p]

else x ← CHOOSE_PIVOT(A, p, r)

q ← PARTITION(A, p, r, x)

rank_x ← q – p + 1

if k = rank_x then return x

if k < rank_x then return SELECT(A, p, q-1, k)

else return SELECT(A, q+1, r, k-q)
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Example: SELECT Algorithm

 Select the 6th smallest element of the set {5, 9, 2, 6, 4, 1, 3, 7}

5

9

2

6

4

1

3

7

3

1

2

4

6

9

5

7

6

9

5

7

6

5

7

9

6

5

5

6

k = 6 pivot = 4

k = 6-4=2 pivot = 7

k = 2 pivot=6

rank_x = 4

rank_x = 3 rank_x = 2

Recur Partition

Recur Partition

Recur Partition



41

Analysis of SELECT Algorithm
 For the moment, we will assume that partitioning and pivot 

both take Θ(n) time

 How many elements do we eliminate each time?

 If x is the smallest or the largest then we may only succeed in 

eliminating one element
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Analysis of SELECT Algorithm (cont’d)

 Ideally, x should have a rank that is neither too large or too 

small

5 9 2 6 4 1 3 7

1 5 9 2 6 4 3 7

Pivot is 1

After partitioning
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Analysis of SELECT Algorithm (cont’d)

 Suppose we are able too choose a pivot that causes exactly half of 

the array to be eliminated in each phase

 This means that we recurse on the remaining n/2 elements

 This leads to the following recurrence
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Analysis of SELECT Algorithm (cont’d)

 If we expand this recurrence we get
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Analysis of SELECT Algorithm (cont’d)

 Recall the formula for infinite geometric series; for any 

|c| < 1,
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Analysis of SELECT Algorithm (cont’d)

 Lets think about how we ended up with a Θ(n) algorithm for

selection

 Normally a Θ(n) algorithm would make a single or perhaps a

constant number of passes of the data set

 In this algorithm we make a number of passes. In fact it could be as

many as log n

 However, because we eliminate a constant fraction of the array

with each phase, we get the convergent geometric series in the

analysis.


