
Analysis of Algorithm

Lecture-04: Merge Sort and Selection Problem

1

2

Sorting

 Sorting is a well studied problem from analysis point of
view

 Sorting is one of few problems where provable lower
bounds exist on how fast we can sort

 In sorting we are given an array A[1..n] of n numbers

 We are to reorder these elements into increasing (or
decreasing) order

3

Divide-and-Conquer

 The Divide-and-Conquer strategy is employed to solve large
number of computational problems.

 Divide: the problem into a small number to pieces.

 Conquer: solve each piece by applying divide and conquer to it
recursively.

 Combine: the pieces together into a global solution.

4

Merge Sort

 Divide: Split A down the middle into two subsequences, each

of size roughly n/2

 Conquer: Sort each subsequence by calling merge sort

recursively on each

 Combine: Merge the two sorted subsequences into a single

sorted list.

5

Merge Sort

 The dividing process ends when we have split the

subsequences down to a single item.

 A sequence of length 1 is trivially sorted.

6

Merge Sort (split)

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

split

7

Merge Sort (merge)

0 1 2 3 4 5 6 7

2 4 5 7 0 1 3 6

5 7 2 4 1 6 0 3

7 5 2 4 1 6 3 0

merge

8

MERGE-SORT Algorithm

MERGE-SORT(array A, int p, int r)

if (p < r) then

q ←(p+r)/2

MERGE-SORT(A, p, q)

MERGE-SORT(A, q+1, r)

MERGE(A, p, q, r)

9

MERGE Algorithm

MERGE(array A, int p, int q, int r)

int B[p..r]; int i ← k ← p; int j ← q+1;

while (i ≤ q) and (j ≤ r)

do

if (A[i] < A[j]) then

B[k++] ← A[i++];

else

B[k++] ← A[j++];

while (i ≤ q) do B[k++] ← A[i++];

while (j ≤ r) do B[k++] ← A[j++];

for i ← p to r do A[i] ← B[i];

10

Logarithmic identities

 

0)1(log

1)(log

)(log
log

)(log)(log

)(log)(loglog

)(log)(log)(log

 ifonly and if)(log

)log()log(
























b

b

xy

by

b

b

y

b

bbb

bbb

y

b

b

yx

y

x
x

xyx

yx
y

x

yxxy

bxxy

11

Analysis of Merge Sort
 First consider the running time of procedure MERGE(A, p, q, r).

 Let n = r – p + 1 denote the total length of both left and right sub
arrays, i.e. sorted pieces.

 The MERGE procedure contains four loops, none nested in the
other.

 Each loop can execute at most n times.

 Let T(n) denote the worst case running time of MERGE-SORT on
an array of length n.

 If we call MERGE-SORT with an array containing a single item (n
= 1) then the running time is constant.

 We can just write T(n) = 1, ignoring all constants.

12

Analysis of Merge Sort (cont’d)

 For n > 1 MERGE-SORT Splits into two halves, sorts the two

and then merges them together.

 The left half is of size and the right half is

 How long does it take to sort the elements in sub array of size

 We do not know this, but because,

we can express this as

 2/n  2/n

 2/n

  1for 2/  nnn

 )2/(nT

13

Analysis of Merge Sort (cont’d)

 Similarly the time taken to sort right sub array is
expressed as

 In conclusion we have

 This is called recurrence relation i.e. a recursively
defined function.

 )2/(nT

    












otherwise)2/()2/(

1 if1
)(

nnTnT

n
nT

14

Solving the Recurrence

 Lets expand the terms

19232808032)16()16()32(

...

8016323216)8()8()16(

...

32812128)4()4()8(

...

175485)2()3()5(

124884)2()2()4(

83143)1()2()3(

42112)1()1()2(

1)1(

















TTT

TTT

TTT

TTT

TTT

TTT

TTT

T

15

Solving the Recurrence (cont’d)

 What is the pattern here?

 Let’s consider the ratio of T(n)/n for powers of 2

 This suggests T(n)/n = log n + 1

632/)32(

516/)16(

48/)8(

34/)4(

22/)2(

11/)1(













T

T

T

T

T

T

16

Solving the Recurrence (cont’d)

 Floor and ceiling are difficult to deal with

 If n is assumed to be a power of 2 (2k = n) this will
simplify the recurrence to














otherwise)2/(2

1 if1
)(

nnT

n
nT

17

The Iteration Method

nnnnnT

nnnnnT

nnnnT

nnnnT

nnnT

nnnT

nnTnT















)16/(16

)8/)16/(2(8

)8/(8

)4/)8/(2(4

)4/(4

)2/)4/(2(2

)2/(2)(

18

The Iteration Method (cont’d)

 If n is power of 2 then let n = 2k or k=log n.

)...())2/((2)(nnnnnTnT kk 
k times

nnnnnnT

nnnnT

nnnT

knnT

n

nn

kk

loglog)1(

)(log)/(2

)(log))2/((2

))2/((2

)(log

)(log)(log









19

MERGE-SORT Recursion tree

)2/(2 nn 

)4/(4 nn 

)8/(8 nn

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n/4 n/4 n/4 n/4

n/2 n/2

n

)/(nnnn 

n

)1)(log( nn

L
o
g
(n

)+
1

 L

e
ve

ls

Time to merge

20

Example-1: Solving Recurrence

• Assume n to be power of 4 i.e. n = 4k and k = log4 n














otherwise)4/(3

1 if1
)(

nnT

n
nT

21

Example-1: Solving Recurrence (cont’d)

 Iteration Method

...

)4/(3)16/(9)64/(27

)4/(3)16/(9

))4/())16/(3(3

)4/(3)(











nnnnT

nnnT

nnnT

nnTnT

22

Example-1: Solving Recurrence (cont’d)

nTnT

Tn

n
n

TnT

nnnn
n

TnT

n

i
i

i
n

k

k

i
i

i

k

k

kk

k

k























1)(log

0

log

1

0

11

4

4

4

3
)1(3)(

1)1(and 4With

4

3
)

4
(3)(

)4/(3)16/(9...)4/(3)
4

(3)(

23

Example-1: Solving Recurrence (cont’d)

1

1

1for

 series; geometric a is
4

3
 sum The

 formula theused we

4

3
)(

have thuswe

 ;)4/3(4/3 and sum thethroughout

constant remains

1

0

1)(log

0

loglog

1)(log

0

3log

4

4

4

















































x

x
x

x

na

nnnT

n

mm

i

i

in

i

an

in

i

iii

bb

24

Example-1: Solving Recurrence (cont’d)

n

n
n

nn

nnnT

nmx

x

x
x

n

n

mm

i

i

3log
13log

4log3log)4/3(loglog

11)(log
3log

4

1

0

4

4

4444

4

4

)4/3(

more onceidentity log theApplying

1)4/3(

1)4/3(
)(

get We

1log and 4/3 case In this

1

1





























25

Example-1: Solving Recurrence (cont’d)

)(343log34)(

result! thehavefinally we,79.03logwith

34

44

)(4
1

)(4

4/1

1/)(

4/1

4/1

1)4/3(

1

)(

get weback, thisplug weif

79.0

4

4

3log

3log3log

3log3log
3log

3log
3log

3log
3log

3log

3log
3log

3log

3log

4

44

44

4

4

4

4

4

4

4

4

4

4

nnnnnnT

nn

nnn

nnn
nn

n
nn

n
nn

n

nn
n

n

n

nnnT




































Example-2: Solving Recurrence

26

)(
2

)1(

14321

1234

123

12

1

2n
nn

 + n + … + n - + +) + = f(

…

 + n + n - + n -) + n - = f(n-

 + n + n -) + n - = f(n-

 + n) + n - = f(n-

) + n-f(n) = f(n






Example-3: Solving Recurrence

27

n)(=

n=

 + … + + = f(n/n) +

…

 + + +) + = f(n/

 + +) + = f(n/

 +) + = f(n/

) + /f(n) = f(n

log

log

111

111116

1118

114

12

2



Example-4: Solving Recurrence

28
)(

12

12

12

12

12

122

12

12

1

1
2

1248...2/)/(

...

12481616

124)1)2/(2(8

12488

121824

1244

11422

122

)2(log)(log

)1(log)1(log

0

n
nn

x

x

nnnnf

 + + +) + f(n/=

nf

)f(n/=

))f(n/(=

)f(n/

))f(n/(

) + f(n/f(n) =

n

nnn

i

i













































Example-5: Solving Recurrence

29
)(2)(

2
2/1

1

)2/1(1

1

1

1

2

1

2/1 have we thisusing

1for
1

1

so series, decreasing a is this

2

1

2

248421

24842

...

24816

248

24

2

0

0

log

0

log

0

nnnT

nnn
c

nn

c

 |c|
c

c

n
n

+n+n/+n/n/...++=

+n+n/+n/n/...+= f(n/n)+

+n+ n/+n/)+n/= f(n/

+n+n/)+n/= f(n/

+n)+n/= f(n/

)+nf(n)=f(n/

i
i

i

i

n

i
i

n

i
i








































30

Selection Problem

 Suppose you have a series of numbers

 5, 7, 2, 10, 8, 15, 21, 37, 41

 How many numbers are smaller than 10

 Rank of a number is the position of number in sorted sequence

 To find the rank of all number we can write O(n2) algorithm.

 We can sort the numbers

 Sorting takes O(n log n).

 Left to right scanning of array is O(n).

Pos 1 2 3 4 5 6 7 8 9

Num 2 5 7 8 10 15 21 37 41

31

Median

 Median is the middle rank number in a list of number.

 Median is of particular interest in statistics.

 Medians are useful as a measure of central tendency of a
set especially when the distribution of values is highly
skewed.

 For example, the median income in a community is
more meaningful measure than average.

32

Median (cont’d)

 Suppose 7 households have monthly incomes 5000,

7000, 2000, 10000, 8000, 15000 and 16000

 In sorted order incomes are 2000, 5000, 7000, 8000,

10000, 15000, 16000

 The Median income is 8000; median is element with

rank 4: (7+1)/2=4

 The average income is 9000

33

Median (cont’d)

 Suppose the income 16000 goes up to 450,000

 The median is still 8000, but the average goes up to 71000

 Clearly the average is not good representative of the majority

of income levels.

34

Medians & Selection -Sieve Technique

 We will use a variation of divide and conquer strategy called sieve
technique.

 In divide & conquer, we break the problem into a small number of
smaller subproblems which we solve recursively.

 In Selection Problem we are looking for an item.

 We will divide the problem into subproblems.

 However we will discard those smaller subproblems for which we
determine that they do not contain the desired answer (the
variation).

35

Medians & Selection -Sieve Technique (cont’d)

 Here is how the sieve technique will be applied to the selection

problem

 We will begin with the given array A[1..n]

 We will pick an item from the array, called the pivot element

which we will denote by x.

 For now just think of pivot element as a random element of A.

36

Medians & Selection -Sieve Technique (cont’d)

 We partition A into three parts

1. A[q] contains the pivot element x.

2. A[1..q-1] will contain all the elements that are less than x

3. A[q+1..n] will contain all the elements that are greater than x

 Within each sub-array the items may appear in any order.

37

Medians & Selection -Sieve Technique (cont’d)

5 9 2 6 4 1 3 7

p r

pivot

3 1 2 4 6 9 5 7

p rq

Partition

38

Medians & Selection -Sieve Technique (cont’d)

 The rank of the pivot x is

 q – p + 1 in A[p..r]

 Let rank_x = q – p + 1

 If k = rank_x then the pivot is kth smallest.

 If k < rank_x then search A[p..q-1] recursively

 If k > rank_x then search A[q+1..r] recursively. Find

element of rank (k-q) because we eliminated q smaller

elements in A.

39

SELECT Algorithm
SELECT(array A, int p, int r, int k)

if (p = r) then return A[p]

else x ← CHOOSE_PIVOT(A, p, r)

q ← PARTITION(A, p, r, x)

rank_x ← q – p + 1

if k = rank_x then return x

if k < rank_x then return SELECT(A, p, q-1, k)

else return SELECT(A, q+1, r, k-q)

40

Example: SELECT Algorithm

 Select the 6th smallest element of the set {5, 9, 2, 6, 4, 1, 3, 7}

5

9

2

6

4

1

3

7

3

1

2

4

6

9

5

7

6

9

5

7

6

5

7

9

6

5

5

6

k = 6 pivot = 4

k = 6-4=2 pivot = 7

k = 2 pivot=6

rank_x = 4

rank_x = 3 rank_x = 2

Recur Partition

Recur Partition

Recur Partition

41

Analysis of SELECT Algorithm
 For the moment, we will assume that partitioning and pivot

both take Θ(n) time

 How many elements do we eliminate each time?

 If x is the smallest or the largest then we may only succeed in

eliminating one element

42

Analysis of SELECT Algorithm (cont’d)

 Ideally, x should have a rank that is neither too large or too

small

5 9 2 6 4 1 3 7

1 5 9 2 6 4 3 7

Pivot is 1

After partitioning

43

Analysis of SELECT Algorithm (cont’d)

 Suppose we are able too choose a pivot that causes exactly half of

the array to be eliminated in each phase

 This means that we recurse on the remaining n/2 elements

 This leads to the following recurrence














otherwise)2/(

1 if1
)(

nnT

n
nT

44

Analysis of SELECT Algorithm (cont’d)

 If we expand this recurrence we get


















0

0

2

1

2

...
42

)(

i
i

i
i

n

n

nn
nnT

45

Analysis of SELECT Algorithm (cont’d)

 Recall the formula for infinite geometric series; for any

|c| < 1,

)(2)(

2
2/1

1

)2/1(1

1

1

1

2

1

have we thisusing

1

1

0

0

nnnT

nnn
c

nn

c
c

i
i

i

i


























46

Analysis of SELECT Algorithm (cont’d)

 Lets think about how we ended up with a Θ(n) algorithm for

selection

 Normally a Θ(n) algorithm would make a single or perhaps a

constant number of passes of the data set

 In this algorithm we make a number of passes. In fact it could be as

many as log n

 However, because we eliminate a constant fraction of the array

with each phase, we get the convergent geometric series in the

analysis.

