
Analysis of Algorithm

Lecture-04: Merge Sort and Selection Problem

1

2

Sorting

 Sorting is a well studied problem from analysis point of
view

 Sorting is one of few problems where provable lower
bounds exist on how fast we can sort

 In sorting we are given an array A[1..n] of n numbers

 We are to reorder these elements into increasing (or
decreasing) order

3

Divide-and-Conquer

 The Divide-and-Conquer strategy is employed to solve large
number of computational problems.

 Divide: the problem into a small number to pieces.

 Conquer: solve each piece by applying divide and conquer to it
recursively.

 Combine: the pieces together into a global solution.

4

Merge Sort

 Divide: Split A down the middle into two subsequences, each

of size roughly n/2

 Conquer: Sort each subsequence by calling merge sort

recursively on each

 Combine: Merge the two sorted subsequences into a single

sorted list.

5

Merge Sort

 The dividing process ends when we have split the

subsequences down to a single item.

 A sequence of length 1 is trivially sorted.

6

Merge Sort (split)

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

7 5 2 4 1 6 3 0

split

7

Merge Sort (merge)

0 1 2 3 4 5 6 7

2 4 5 7 0 1 3 6

5 7 2 4 1 6 0 3

7 5 2 4 1 6 3 0

merge

8

MERGE-SORT Algorithm

MERGE-SORT(array A, int p, int r)

if (p < r) then

q ←(p+r)/2

MERGE-SORT(A, p, q)

MERGE-SORT(A, q+1, r)

MERGE(A, p, q, r)

9

MERGE Algorithm

MERGE(array A, int p, int q, int r)

int B[p..r]; int i ← k ← p; int j ← q+1;

while (i ≤ q) and (j ≤ r)

do

if (A[i] < A[j]) then

B[k++] ← A[i++];

else

B[k++] ← A[j++];

while (i ≤ q) do B[k++] ← A[i++];

while (j ≤ r) do B[k++] ← A[j++];

for i ← p to r do A[i] ← B[i];

10

Logarithmic identities

0)1(log

1)(log

)(log
log

)(log)(log

)(log)(loglog

)(log)(log)(log

 ifonly and if)(log

)log()log(

b

b

xy

by

b

b

y

b

bbb

bbb

y

b

b

yx

y

x
x

xyx

yx
y

x

yxxy

bxxy

11

Analysis of Merge Sort
 First consider the running time of procedure MERGE(A, p, q, r).

 Let n = r – p + 1 denote the total length of both left and right sub
arrays, i.e. sorted pieces.

 The MERGE procedure contains four loops, none nested in the
other.

 Each loop can execute at most n times.

 Let T(n) denote the worst case running time of MERGE-SORT on
an array of length n.

 If we call MERGE-SORT with an array containing a single item (n
= 1) then the running time is constant.

 We can just write T(n) = 1, ignoring all constants.

12

Analysis of Merge Sort (cont’d)

 For n > 1 MERGE-SORT Splits into two halves, sorts the two

and then merges them together.

 The left half is of size and the right half is

 How long does it take to sort the elements in sub array of size

 We do not know this, but because,

we can express this as

 2/n 2/n

 2/n

 1for 2/ nnn

)2/(nT

13

Analysis of Merge Sort (cont’d)

 Similarly the time taken to sort right sub array is
expressed as

 In conclusion we have

 This is called recurrence relation i.e. a recursively
defined function.

)2/(nT

otherwise)2/()2/(

1 if1
)(

nnTnT

n
nT

14

Solving the Recurrence

 Lets expand the terms

19232808032)16()16()32(

...

8016323216)8()8()16(

...

32812128)4()4()8(

...

175485)2()3()5(

124884)2()2()4(

83143)1()2()3(

42112)1()1()2(

1)1(

TTT

TTT

TTT

TTT

TTT

TTT

TTT

T

15

Solving the Recurrence (cont’d)

 What is the pattern here?

 Let’s consider the ratio of T(n)/n for powers of 2

 This suggests T(n)/n = log n + 1

632/)32(

516/)16(

48/)8(

34/)4(

22/)2(

11/)1(

T

T

T

T

T

T

16

Solving the Recurrence (cont’d)

 Floor and ceiling are difficult to deal with

 If n is assumed to be a power of 2 (2k = n) this will
simplify the recurrence to

otherwise)2/(2

1 if1
)(

nnT

n
nT

17

The Iteration Method

nnnnnT

nnnnnT

nnnnT

nnnnT

nnnT

nnnT

nnTnT

)16/(16

)8/)16/(2(8

)8/(8

)4/)8/(2(4

)4/(4

)2/)4/(2(2

)2/(2)(

18

The Iteration Method (cont’d)

 If n is power of 2 then let n = 2k or k=log n.

)...())2/((2)(nnnnnTnT kk
k times

nnnnnnT

nnnnT

nnnT

knnT

n

nn

kk

loglog)1(

)(log)/(2

)(log))2/((2

))2/((2

)(log

)(log)(log

19

MERGE-SORT Recursion tree

)2/(2 nn

)4/(4 nn

)8/(8 nn

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n/4 n/4 n/4 n/4

n/2 n/2

n

)/(nnnn

n

)1)(log(nn

L
o
g
(n

)+
1

 L

e
ve

ls

Time to merge

20

Example-1: Solving Recurrence

• Assume n to be power of 4 i.e. n = 4k and k = log4 n

otherwise)4/(3

1 if1
)(

nnT

n
nT

21

Example-1: Solving Recurrence (cont’d)

 Iteration Method

...

)4/(3)16/(9)64/(27

)4/(3)16/(9

))4/())16/(3(3

)4/(3)(

nnnnT

nnnT

nnnT

nnTnT

22

Example-1: Solving Recurrence (cont’d)

nTnT

Tn

n
n

TnT

nnnn
n

TnT

n

i
i

i
n

k

k

i
i

i

k

k

kk

k

k

1)(log

0

log

1

0

11

4

4

4

3
)1(3)(

1)1(and 4With

4

3
)

4
(3)(

)4/(3)16/(9...)4/(3)
4

(3)(

23

Example-1: Solving Recurrence (cont’d)

1

1

1for

 series; geometric a is
4

3
 sum The

 formula theused we

4

3
)(

have thuswe

 ;)4/3(4/3 and sum thethroughout

constant remains

1

0

1)(log

0

loglog

1)(log

0

3log

4

4

4

x

x
x

x

na

nnnT

n

mm

i

i

in

i

an

in

i

iii

bb

24

Example-1: Solving Recurrence (cont’d)

n

n
n

nn

nnnT

nmx

x

x
x

n

n

mm

i

i

3log
13log

4log3log)4/3(loglog

11)(log
3log

4

1

0

4

4

4444

4

4

)4/3(

more onceidentity log theApplying

1)4/3(

1)4/3(
)(

get We

1log and 4/3 case In this

1

1

25

Example-1: Solving Recurrence (cont’d)

)(343log34)(

result! thehavefinally we,79.03logwith

34

44

)(4
1

)(4

4/1

1/)(

4/1

4/1

1)4/3(

1

)(

get weback, thisplug weif

79.0

4

4

3log

3log3log

3log3log
3log

3log
3log

3log
3log

3log

3log
3log

3log

3log

4

44

44

4

4

4

4

4

4

4

4

4

4

nnnnnnT

nn

nnn

nnn
nn

n
nn

n
nn

n

nn
n

n

n

nnnT

Example-2: Solving Recurrence

26

)(
2

)1(

14321

1234

123

12

1

2n
nn

 + n + … + n - + +) + = f(

…

 + n + n - + n -) + n - = f(n-

 + n + n -) + n - = f(n-

 + n) + n - = f(n-

) + n-f(n) = f(n

Example-3: Solving Recurrence

27

n)(=

n=

 + … + + = f(n/n) +

…

 + + +) + = f(n/

 + +) + = f(n/

 +) + = f(n/

) + /f(n) = f(n

log

log

111

111116

1118

114

12

2

Example-4: Solving Recurrence

28
)(

12

12

12

12

12

122

12

12

1

1
2

1248...2/)/(

...

12481616

124)1)2/(2(8

12488

121824

1244

11422

122

)2(log)(log

)1(log)1(log

0

n
nn

x

x

nnnnf

 + + +) + f(n/=

nf

)f(n/=

))f(n/(=

)f(n/

))f(n/(

) + f(n/f(n) =

n

nnn

i

i

Example-5: Solving Recurrence

29
)(2)(

2
2/1

1

)2/1(1

1

1

1

2

1

2/1 have we thisusing

1for
1

1

so series, decreasing a is this

2

1

2

248421

24842

...

24816

248

24

2

0

0

log

0

log

0

nnnT

nnn
c

nn

c

 |c|
c

c

n
n

+n+n/+n/n/...++=

+n+n/+n/n/...+= f(n/n)+

+n+ n/+n/)+n/= f(n/

+n+n/)+n/= f(n/

+n)+n/= f(n/

)+nf(n)=f(n/

i
i

i

i

n

i
i

n

i
i

30

Selection Problem

 Suppose you have a series of numbers

 5, 7, 2, 10, 8, 15, 21, 37, 41

 How many numbers are smaller than 10

 Rank of a number is the position of number in sorted sequence

 To find the rank of all number we can write O(n2) algorithm.

 We can sort the numbers

 Sorting takes O(n log n).

 Left to right scanning of array is O(n).

Pos 1 2 3 4 5 6 7 8 9

Num 2 5 7 8 10 15 21 37 41

31

Median

 Median is the middle rank number in a list of number.

 Median is of particular interest in statistics.

 Medians are useful as a measure of central tendency of a
set especially when the distribution of values is highly
skewed.

 For example, the median income in a community is
more meaningful measure than average.

32

Median (cont’d)

 Suppose 7 households have monthly incomes 5000,

7000, 2000, 10000, 8000, 15000 and 16000

 In sorted order incomes are 2000, 5000, 7000, 8000,

10000, 15000, 16000

 The Median income is 8000; median is element with

rank 4: (7+1)/2=4

 The average income is 9000

33

Median (cont’d)

 Suppose the income 16000 goes up to 450,000

 The median is still 8000, but the average goes up to 71000

 Clearly the average is not good representative of the majority

of income levels.

34

Medians & Selection -Sieve Technique

 We will use a variation of divide and conquer strategy called sieve
technique.

 In divide & conquer, we break the problem into a small number of
smaller subproblems which we solve recursively.

 In Selection Problem we are looking for an item.

 We will divide the problem into subproblems.

 However we will discard those smaller subproblems for which we
determine that they do not contain the desired answer (the
variation).

35

Medians & Selection -Sieve Technique (cont’d)

 Here is how the sieve technique will be applied to the selection

problem

 We will begin with the given array A[1..n]

 We will pick an item from the array, called the pivot element

which we will denote by x.

 For now just think of pivot element as a random element of A.

36

Medians & Selection -Sieve Technique (cont’d)

 We partition A into three parts

1. A[q] contains the pivot element x.

2. A[1..q-1] will contain all the elements that are less than x

3. A[q+1..n] will contain all the elements that are greater than x

 Within each sub-array the items may appear in any order.

37

Medians & Selection -Sieve Technique (cont’d)

5 9 2 6 4 1 3 7

p r

pivot

3 1 2 4 6 9 5 7

p rq

Partition

38

Medians & Selection -Sieve Technique (cont’d)

 The rank of the pivot x is

 q – p + 1 in A[p..r]

 Let rank_x = q – p + 1

 If k = rank_x then the pivot is kth smallest.

 If k < rank_x then search A[p..q-1] recursively

 If k > rank_x then search A[q+1..r] recursively. Find

element of rank (k-q) because we eliminated q smaller

elements in A.

39

SELECT Algorithm
SELECT(array A, int p, int r, int k)

if (p = r) then return A[p]

else x ← CHOOSE_PIVOT(A, p, r)

q ← PARTITION(A, p, r, x)

rank_x ← q – p + 1

if k = rank_x then return x

if k < rank_x then return SELECT(A, p, q-1, k)

else return SELECT(A, q+1, r, k-q)

40

Example: SELECT Algorithm

 Select the 6th smallest element of the set {5, 9, 2, 6, 4, 1, 3, 7}

5

9

2

6

4

1

3

7

3

1

2

4

6

9

5

7

6

9

5

7

6

5

7

9

6

5

5

6

k = 6 pivot = 4

k = 6-4=2 pivot = 7

k = 2 pivot=6

rank_x = 4

rank_x = 3 rank_x = 2

Recur Partition

Recur Partition

Recur Partition

41

Analysis of SELECT Algorithm
 For the moment, we will assume that partitioning and pivot

both take Θ(n) time

 How many elements do we eliminate each time?

 If x is the smallest or the largest then we may only succeed in

eliminating one element

42

Analysis of SELECT Algorithm (cont’d)

 Ideally, x should have a rank that is neither too large or too

small

5 9 2 6 4 1 3 7

1 5 9 2 6 4 3 7

Pivot is 1

After partitioning

43

Analysis of SELECT Algorithm (cont’d)

 Suppose we are able too choose a pivot that causes exactly half of

the array to be eliminated in each phase

 This means that we recurse on the remaining n/2 elements

 This leads to the following recurrence

otherwise)2/(

1 if1
)(

nnT

n
nT

44

Analysis of SELECT Algorithm (cont’d)

 If we expand this recurrence we get

0

0

2

1

2

...
42

)(

i
i

i
i

n

n

nn
nnT

45

Analysis of SELECT Algorithm (cont’d)

 Recall the formula for infinite geometric series; for any

|c| < 1,

)(2)(

2
2/1

1

)2/1(1

1

1

1

2

1

have we thisusing

1

1

0

0

nnnT

nnn
c

nn

c
c

i
i

i

i

46

Analysis of SELECT Algorithm (cont’d)

 Lets think about how we ended up with a Θ(n) algorithm for

selection

 Normally a Θ(n) algorithm would make a single or perhaps a

constant number of passes of the data set

 In this algorithm we make a number of passes. In fact it could be as

many as log n

 However, because we eliminate a constant fraction of the array

with each phase, we get the convergent geometric series in the

analysis.

