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What is Sorting?

An operation that segregates items into groups 

according to specified criterion or key

Examples:- Sorting Books in Library, Sorting 

Individuals by Height, Sorting Movies in Blockbuster 

Sorting Numbers, sorting student records.

A = { 3 1 6 2 1 3 4 5 9 0 }

A = { 0 1 1 2 3 3 4 5 6 9 }
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Some Definitions

 Internal Sort

– The data to be sorted is all stored in the 

computer’s main memory.

 External Sort

– Some of the data to be sorted might be stored in 

some external, slower, device.

 In Place Sort

– The amount of extra space required to sort the 

data is constant with the input size.
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Stability

 A STABLE sort  preserves relative order of records with equal keys

4

Sorted on first key:

Sort file on second key:

Records with key value 

3 are not in order on 

first key!!



Insertion Sort

 Idea: like sorting a hand of playing cards

– Start with an empty left hand and the cards facing 

down on the table.

– Remove one card at a time from the table, and 

insert it into the correct position in the left hand

 compare it with each of the cards already in the hand, 

from right to left

– The cards held in the left hand are sorted

 these cards were originally the top cards of the pile on 

the table
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To insert 12, we need to 

make room for it by moving 

first 36 and then 24.

Insertion Sort

Design and Analysis of Algorithm6



Insertion Sort
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Insertion Sort
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Insertion Sort Algorithm
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Insertion Sort Algorithm


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LOOP INVARIANTS AND THE CORRECTNESS OF 
INSERTION SORT

 Initialization: It is true prior to the first iteration of the

loop i.e. the sub-array A[1..j-1], therefore, consists of

just the single element A[1], which is in fact the

original element in A[1]

 Maintenance: If it is true before an iteration of the

loop, it remains true before the next iteration.

 Termination: When the loop terminates, the

invariant gives us a useful property that helps show

that the algorithm is correct.
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THE DIVIDE-AND-CONQUER APPROACH

 Many useful algorithms are recursive in

structure

 To solve a given problem, they call

themselves recursively one or more times

to deal with closely related sub-problems.

 These algorithms typically follow a divide-

and-conquer approach:
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THE DIVIDE-AND-CONQUER APPROACH

 These algorithms break the problem

into several sub-problems that are

similar to the original problem but

smaller in size, solve the sub-problems

recursively, and then combine these

solutions to create a solution to the

original problem.
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THE DIVIDE-AND-CONQUER APPROACH

 The divide-and-conquer paradigm involves

three steps at each level of the recursion:

– Divide the problem into a number of sub-problems

that are smaller instances of the same problem.

– Conquer the sub-problems by solving them

recursively.

– Combine the solutions to the sub-problems into the

solution for the original problem.
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MERGE SORT
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MERGE PROCEDURE
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LOOP INVARIANT

 At the start of each iteration of the for loop of

lines 12–17,

– The sub-array A[p . . . . K-1] contains the k - p

smallest elements of L[1 …..n1+1] and R[1

….n2+1], in sorted order.

– Moreover, L[i] and R[j] are the smallest elements

of their arrays that have not been copied back into

A.
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LOOP INVARIANT

 Initialization:

– Prior to the first iteration of the loop, we have k =

p, so k-p=0 and the sub-array A[p…..k-1] is empty

and since i = j = 1, both L[i] and R[j] are the

smallest elements of their arrays that have not

been copied back into A.

– Maintenance: ?

– Termination: ?
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ANALYZING DIVIDE-AND-CONQUER 
ALGORITHMS

 When an algorithm contains a recursive call to

itself, its running time is often described by a

recurrence equation or recurrence

 Recurrence equation or recurrence describes

the overall running time on a problem of size n

in terms of the running time on smaller inputs.

 Mathematical tools are then used to solve the

recurrence and to provide bounds on the

performance of the algorithm.
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ANALYZING DIVIDE-AND-CONQUER 
ALGORITHMS

 Here 

– Suppose that the division of the problem yields a sub-problems, each 

of which is 1/b the size of the original.

– It takes time T(n/b) to solve one sub-problem of size n/b, and so it 

takes time aT(n/b) to solve a of them. 

– D(n) is the time to divide the problem into sub-problems and

– C(n) is the time to combine the solutions to the sub-problems into the 

solution to the original problem,
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ANALYSIS OF MERGE SORT 
ALGORITHM

 Divide: The divide step just computes the middle

of the sub-array, which takes constant time. Thus,

D(n) = ϴ(1).

 Conquer: We recursively solve two sub-

problems, each of size n/2, which contributes

2T(n/2) to the running time.

 Combine: We have already noted that the

MERGE procedure on an n-element sub-array

takes time ϴ(n), and so C(n) = ϴ(n).
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ANALYSIS OF MERGE SORT 
ALGORITHM

 Recurrence for the worst-case running time 

T(n) of merge sort
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