
By

Syed Bakhtawar Shah Abid

Lecturer in Computer Science

Analysis and Design of
Algorithms

Design and Analysis of Algorithm1

What is Sorting?

An operation that segregates items into groups

according to specified criterion or key

Examples:- Sorting Books in Library, Sorting

Individuals by Height, Sorting Movies in Blockbuster

Sorting Numbers, sorting student records.

A = { 3 1 6 2 1 3 4 5 9 0 }

A = { 0 1 1 2 3 3 4 5 6 9 }

Design and Analysis of Algorithm2

Some Definitions

 Internal Sort

– The data to be sorted is all stored in the

computer’s main memory.

 External Sort

– Some of the data to be sorted might be stored in

some external, slower, device.

 In Place Sort

– The amount of extra space required to sort the

data is constant with the input size.

Design and Analysis of Algorithm3

Stability

 A STABLE sort preserves relative order of records with equal keys

4

Sorted on first key:

Sort file on second key:

Records with key value

3 are not in order on

first key!!

Insertion Sort

 Idea: like sorting a hand of playing cards

– Start with an empty left hand and the cards facing

down on the table.

– Remove one card at a time from the table, and

insert it into the correct position in the left hand

 compare it with each of the cards already in the hand,

from right to left

– The cards held in the left hand are sorted

 these cards were originally the top cards of the pile on

the table
Design and Analysis of Algorithm5

To insert 12, we need to

make room for it by moving

first 36 and then 24.

Insertion Sort

Design and Analysis of Algorithm6

Insertion Sort

Design and Analysis of Algorithm7

Insertion Sort

Design and Analysis of Algorithm8

Insertion Sort Algorithm

Design and Analysis of Algorithm9

Insertion Sort Algorithm



Design and Analysis of Algorithm10

LOOP INVARIANTS AND THE CORRECTNESS OF
INSERTION SORT

 Initialization: It is true prior to the first iteration of the

loop i.e. the sub-array A[1..j-1], therefore, consists of

just the single element A[1], which is in fact the

original element in A[1]

 Maintenance: If it is true before an iteration of the

loop, it remains true before the next iteration.

 Termination: When the loop terminates, the

invariant gives us a useful property that helps show

that the algorithm is correct.

Design and Analysis of Algorithm11

THE DIVIDE-AND-CONQUER APPROACH

 Many useful algorithms are recursive in

structure

 To solve a given problem, they call

themselves recursively one or more times

to deal with closely related sub-problems.

 These algorithms typically follow a divide-

and-conquer approach:

Design and Analysis of Algorithm12

THE DIVIDE-AND-CONQUER APPROACH

 These algorithms break the problem

into several sub-problems that are

similar to the original problem but

smaller in size, solve the sub-problems

recursively, and then combine these

solutions to create a solution to the

original problem.

Design and Analysis of Algorithm13

THE DIVIDE-AND-CONQUER APPROACH

 The divide-and-conquer paradigm involves

three steps at each level of the recursion:

– Divide the problem into a number of sub-problems

that are smaller instances of the same problem.

– Conquer the sub-problems by solving them

recursively.

– Combine the solutions to the sub-problems into the

solution for the original problem.

Design and Analysis of Algorithm14

MERGE SORT

Design and Analysis of Algorithm15

MERGE PROCEDURE

Design and Analysis of Algorithm16

LOOP INVARIANT

 At the start of each iteration of the for loop of

lines 12–17,

– The sub-array A[p K-1] contains the k - p

smallest elements of L[1 …..n1+1] and R[1

….n2+1], in sorted order.

– Moreover, L[i] and R[j] are the smallest elements

of their arrays that have not been copied back into

A.

Design and Analysis of Algorithm17

LOOP INVARIANT

 Initialization:

– Prior to the first iteration of the loop, we have k =

p, so k-p=0 and the sub-array A[p…..k-1] is empty

and since i = j = 1, both L[i] and R[j] are the

smallest elements of their arrays that have not

been copied back into A.

– Maintenance: ?

– Termination: ?

Design and Analysis of Algorithm18

ANALYZING DIVIDE-AND-CONQUER
ALGORITHMS

 When an algorithm contains a recursive call to

itself, its running time is often described by a

recurrence equation or recurrence

 Recurrence equation or recurrence describes

the overall running time on a problem of size n

in terms of the running time on smaller inputs.

 Mathematical tools are then used to solve the

recurrence and to provide bounds on the

performance of the algorithm.
Design and Analysis of Algorithm19

ANALYZING DIVIDE-AND-CONQUER
ALGORITHMS

 Here

– Suppose that the division of the problem yields a sub-problems, each

of which is 1/b the size of the original.

– It takes time T(n/b) to solve one sub-problem of size n/b, and so it

takes time aT(n/b) to solve a of them.

– D(n) is the time to divide the problem into sub-problems and

– C(n) is the time to combine the solutions to the sub-problems into the

solution to the original problem,
Design and Analysis of Algorithm20

ANALYSIS OF MERGE SORT
ALGORITHM

 Divide: The divide step just computes the middle

of the sub-array, which takes constant time. Thus,

D(n) = ϴ(1).

 Conquer: We recursively solve two sub-

problems, each of size n/2, which contributes

2T(n/2) to the running time.

 Combine: We have already noted that the

MERGE procedure on an n-element sub-array

takes time ϴ(n), and so C(n) = ϴ(n).

Design and Analysis of Algorithm21

ANALYSIS OF MERGE SORT
ALGORITHM

 Recurrence for the worst-case running time

T(n) of merge sort

Design and Analysis of Algorithm22

