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What Is Sorting?
S

An operation that segregates items into groups
according to specified criterion or key

Examples:- Sorting Books in Library, Sorting
Individuals by Height, Sorting Movies in Blockbuster
Sorting Numbers, sorting student records.

A={3162134590}

A={0112334569}
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Some Definitions
« /]

e Internal Sort

- The data to be sorted Is all stored in the
computer’'s main memory.

e External Sort

- Some of the data to be sorted might be stored in
some external, slower, device.

e |In Place Sort

- The amount of extra space required to sort the
data is constant with the input size.
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Stability
.

e A STABLE sort preserves relative order of records with equal keys

Sorted on first key:

Sort file on second key:

Records with key value
3 are not in order on
first key!!

Aaron 4 R ££4-480-0023 097 Little
Andrewsa 3 A 874-088-1212 121 Whitman
Battle 4 [ 091-878-4944 308 Blair
Chen 2 A 884-232-5341 11 Dickinson
Fox 1 A 243 -4R86-32021 101 Brown
Furia 3 A Tee-093-3873 22 Brown
Gazel 4 B 5665-303-0268 113 Walker
Kanaga 3 E 8898-122-9642 143 Forbes
Fchde 3 ES 2312-343-55K5 115 Holder
guilici 1 o 3431-997-5642 32 MoCosh
Fox 1 B 243-455-90591 101 Brown
Cuilici 1 [ 343-98T7-RE42 12 Melosh
Chen 2 B aB4-2332-5341 11 Dickinacn
Eanaga E) E a98-1232-9:547 343 Forbes
Endrews 3 B 474-088-1212 121 Whitman
Furia 3 B Te6-093-98713 12 Brown
Rohdes 3 B 232-343-555R5 115 Heolder
Battle 4 cC 991-8T8-4544 308 Blair
Gazei 4 B 665-303-0268 113 Walker
Zaron 4 B EE4-480-0023 097 Little




Insertion Sort
« /]

e Idea: like sorting a hand of playing cards

- Start with an empty left hand and the cards facing
down on the table.

- Remove one card at a time from the table, and
Insert it into the correct position in the left hand

e compare it with each of the cards already in the hand,
from right to left

— The cards held in the left hand are sorted

e these cards were originally the top cards of the pile on

the table | | .
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Insertion Sort

To insert 12, we need to
make room for it by moving
first 36 and then 24.
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Insertion Sort
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Insertion Sort
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Insertion Sort Algorithm
-

¢ Pseudo code for Insertion sort algorithm  constant  times
e Insertion-sort (A, N)

- Repeat step2tod forK=2toN C1 n

- Set Temp := A[K] C2 n-1

- SetPTR:=K-1 C3 n-1

- Repeat while PTR >0 AND Temp < A[PTR] C4 r=o(te)
o AIPTR + 1] := AIPTR] C5 Bt = 1)
o SetPTR:=PTR-1 6 Yi.ti-1

- [End of Loop]

- Set AIPTR + 1] := Temp C7 n-1

- [End of Step 1 Loop]

o Exit
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Insertion Sort Algorithm
-

¢ Therunning time of the algorithm is the sum of running times for
each statement executed.

e A statement that takes C, steps to execute and executes n times

will contribute ¢;n to the total running time.
- SoT(n)=C1n+ C2(n—1)+C3(n—1)+ CAYT_,(t,) + CELT_, (¢, —
1) + C6Yk=2(ty —1) +C7(n—1)
e Running time for already sorted array(Best Case) is a linear
functionof ni.e. T(n) = an + b whereas
e Running time for a reverse sored array(Worst Case) is a quadratic
functionof ni.e. T(n) =an’ + bn + ¢
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LOOP INVARIANTS AND THE CORRECTNESS OF
INSERTION SORT

e Initialization: It is true prior to the first iteration of the
loop i.e. the sub-array A[1..]-1], therefore, consists of
just the single element A[l], which is In fact the
original element in A[1]

e Maintenance: If it Is true before an iteration of the
loop, it remains true before the next iteration.

e Termination: When the loop terminates, the
Invariant gives us a useful property that helps show
that the algorithm is correct.
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THE DIVIDE-AND-CONQUER APPROACH
.

e Many useful algorithms are recursive In
structure

e To solve a given problem, they call
themselves recursively one or more times
to deal with closely related sub-problems.

e These algorithms typically follow a divide-
and-conquer approach:
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THE DIVIDE-AND-CONQUER APPROACH
.

e These algorithms break the problem
Into several sub-problems that are
similar to the original problem but
smaller in size, solve the sub-problems
recursively, and then combine these
solutions to create a solution to the
original problem.
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THE DIVIDE-AND-CONQUER APPROACH
.

e The divide-and-conquer paradigm Involves
three steps at each level of the recursion:

— Divide the problem into a number of sub-problems
that are smaller instances of the same problem.

- Conquer the sub-problems by solving them
recursively.

- Combine the solutions to the sub-problems into the
solution for the original problem.
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MERGE SORT
<

MERGE-SORT(4, ,7)

1 fp<y

¢ =1+

3 MERGE-SORT(4, p,¢)

4 MERGE-SORT(4,¢ +1,7)
3 MERGE(4, p,¢,7)

-2
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MERGE PROCEDURE
<

MERGE(A, p,q¢,7)
ng=qg—p—+1
Ry =7 —¢q
let L[1..ny + 1] and R[1 .. n, + 1] be new arrays
fori = 1ton,
L[i] = Alp+1 —1]
for ] = 1ton,
R[j] = Alg + /]

—
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for c = ptor

13 if L[{] = R[/]
14 Alk] = L[i]
15 I =1+4+1
16 else A[k] = R[/]
ke j=j+1

[—
o
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LOOP INVARIANT
<

e At the start of each iteration of the for loop of

lines 12-17,
- The sub-array A[p . . . . K-1] contains the k - p
smallest elements of L[1 ..... n,+1] and RJ1

....n,+1], in sorted order.

- Moreover, L[i] and R[j] are the smallest elements
of their arrays that have not been copied back into
A.
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LOOP INVARIANT
<

e Initialization:

— Prior to the first iteration of the loop, we have k =
P, so k-p=0 and the sub-array A[p.....k-1] is empty
and since | = | = 1, both L[i] and R[j] are the
smallest elements of their arrays that have not
been copied back into A.

— Maintenance: ?
— Termination: ?

Design and Analysis of Algorithm



ANALYZING DIVIDE-AND-CONQUER
ALGORITHMS

e \When an algorithm contains a recursive call to
itself, its running time Is often described by a
recurrence equation or recurrence

e Recurrence equation or recurrence describes
the overall running time on a problem of size n
In terms of the running time on smaller inputs.

e Mathematical tools are then used to solve the
recurrence and to provide bounds on the
performance of the algorithm.
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ANALYZING DIVIDE-AND-CONQUER
ALGORITHMS

@(1) if??‘i:c,

Fln) = |
) al(n/b)+ D(n)+ C(n) otherwise .

e Here

- Suppose that the division of the problem yields a sub-problems, each
of which is 1/b the size of the original.

_ It takes time T(n/b) to solve one sub-problem of size n/b, and so it
takes time a’T(n/b) to solve a of them.

- D(n) is the time to divide the problem into sub-problems and

- C(n) is the time to combine the solutions to the sub-problems into the

solution to the original problem,
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ANALYSIS OF MERGE SORT
ALGORITHM

e Divide: The divide step just computes the middle
of the sub-array, which takes constant time. Thus,
D(n) = 6(1).

e Conquer: We recursively solve two sub-
problems, each of size n/2, which contributes
2T(n/2) to the running time.

e Combine: We have already noted that the
MERGE procedure on an n-element sub-array
takes time 6(n), and so C(n) = B(n).
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ANALYSIS OF MERGE SORT
ALGORITHM

e Recurrence for the worst-case running time
T(n) of merge sort

\ e gda=1,
T(n)=
2T(nf2)+cen ifn>1,
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