Analysis and Design of
Algorithms

By
Syed Bakhtawar Shah Abid
Lecturer in Computer Science

Design and Analysis of Algorithm

What Is Sorting?
S

An operation that segregates items into groups
according to specified criterion or key

Examples:- Sorting Books in Library, Sorting
Individuals by Height, Sorting Movies in Blockbuster
Sorting Numbers, sorting student records.

A={3162134590}

A={0112334569}

Design and Analysis of Algorithm

Some Definitions
« /]

e Internal Sort

- The data to be sorted Is all stored in the
computer’'s main memory.

e External Sort

- Some of the data to be sorted might be stored in
some external, slower, device.

e |In Place Sort

- The amount of extra space required to sort the
data is constant with the input size.

Design and Analysis of Algorithm

Stability
.

e A STABLE sort preserves relative order of records with equal keys

Sorted on first key:

Sort file on second key:

Records with key value
3 are not in order on
first key!!

Aaron 4 R ££4-480-0023 097 Little
Andrewsa 3 A 874-088-1212 121 Whitman
Battle 4 [091-878-4944 308 Blair
Chen 2 A 884-232-5341 11 Dickinson
Fox 1 A 243 -4R86-32021 101 Brown
Furia 3 A Tee-093-3873 22 Brown
Gazel 4 B 5665-303-0268 113 Walker
Kanaga 3 E 8898-122-9642 143 Forbes
Fchde 3 ES 2312-343-55K5 115 Holder
guilici 1 o 3431-997-5642 32 MoCosh
Fox 1 B 243-455-90591 101 Brown
Cuilici 1 [343-98T7-RE42 12 Melosh
Chen 2 B aB4-2332-5341 11 Dickinacn
Eanaga E) E a98-1232-9:547 343 Forbes
Endrews 3 B 474-088-1212 121 Whitman
Furia 3 B Te6-093-98713 12 Brown
Rohdes 3 B 232-343-555R5 115 Heolder
Battle 4 cC 991-8T8-4544 308 Blair
Gazei 4 B 665-303-0268 113 Walker
Zaron 4 B EE4-480-0023 097 Little

Insertion Sort
« /]

e Idea: like sorting a hand of playing cards

- Start with an empty left hand and the cards facing
down on the table.

- Remove one card at a time from the table, and
Insert it into the correct position in the left hand

e compare it with each of the cards already in the hand,
from right to left

— The cards held in the left hand are sorted

e these cards were originally the top cards of the pile on

the table | | .
Design and Analysis of Algorithm

Insertion Sort

To insert 12, we need to
make room for it by moving
first 36 and then 24.

Design and Analysis of Algorithm

Insertion Sort

Design and Analysis of Algorithm

Insertion Sort

Design and Analysis of Algorithm

Insertion Sort Algorithm
-

¢ Pseudo code for Insertion sort algorithm constant times
e Insertion-sort (A, N)

- Repeat step2tod forK=2toN C1 n

- Set Temp := A[K] C2 n-1

- SetPTR:=K-1 C3 n-1

- Repeat while PTR >0 AND Temp < A[PTR] C4 r=o(te)
o AIPTR + 1] := AIPTR] C5 Bt = 1)
o SetPTR:=PTR-1 6 Yi.ti-1

- [End of Loop]

- Set AIPTR + 1] := Temp C7 n-1

- [End of Step 1 Loop]

o Exit

Design and Analysis of Algorithm

Insertion Sort Algorithm
-

¢ Therunning time of the algorithm is the sum of running times for
each statement executed.

e A statement that takes C, steps to execute and executes n times

will contribute ¢;n to the total running time.
- SoT(n)=C1n+ C2(n—1)+C3(n—1)+ CAYT_,(t,) + CELT_, (¢, —
1) + C6Yk=2(ty —1) +C7(n—1)
e Running time for already sorted array(Best Case) is a linear
functionof ni.e. T(n) = an + b whereas
e Running time for a reverse sored array(Worst Case) is a quadratic
functionof ni.e. T(n) =an’ + bn + ¢

Design and Analysis of Algorithm

LOOP INVARIANTS AND THE CORRECTNESS OF
INSERTION SORT

e Initialization: It is true prior to the first iteration of the
loop i.e. the sub-array A[1..]-1], therefore, consists of
just the single element A[l], which is In fact the
original element in A[1]

e Maintenance: If it Is true before an iteration of the
loop, it remains true before the next iteration.

e Termination: When the loop terminates, the
Invariant gives us a useful property that helps show
that the algorithm is correct.

Design and Analysis of Algorithm

THE DIVIDE-AND-CONQUER APPROACH
.

e Many useful algorithms are recursive In
structure

e To solve a given problem, they call
themselves recursively one or more times
to deal with closely related sub-problems.

e These algorithms typically follow a divide-
and-conquer approach:

Design and Analysis of Algorithm

THE DIVIDE-AND-CONQUER APPROACH
.

e These algorithms break the problem
Into several sub-problems that are
similar to the original problem but
smaller in size, solve the sub-problems
recursively, and then combine these
solutions to create a solution to the
original problem.

Design and Analysis of Algorithm

THE DIVIDE-AND-CONQUER APPROACH
.

e The divide-and-conquer paradigm Involves
three steps at each level of the recursion:

— Divide the problem into a number of sub-problems
that are smaller instances of the same problem.

- Conquer the sub-problems by solving them
recursively.

- Combine the solutions to the sub-problems into the
solution for the original problem.

Design and Analysis of Algorithm

MERGE SORT
<

MERGE-SORT(4, ,7)

1 fp<y

¢ =1+

3 MERGE-SORT(4, p,¢)

4 MERGE-SORT(4,¢ +1,7)
3 MERGE(4, p,¢,7)

-2

Design and Analysis of Algorithm

MERGE PROCEDURE
<

MERGE(A, p,q¢,7)
ng=qg—p—+1
Ry =7 —¢q
let L[1..ny + 1] and R[1 .. n, + 1] be new arrays
fori = 1ton,
L[i] = Alp+1 —1]
for] = 1ton,
R[j] = Alg + /]

—
(e TRV I o JREEN [N O N S 7% T S
R

-
—
S
|
—t

for c = ptor

13 if L[{] = R[/]
14 Alk] = L[i]
15 I =1+4+1
16 else A[k] = R[/]
ke j=j+1

[—
o

Design and Analysis of Algorithm

LOOP INVARIANT
<

e At the start of each iteration of the for loop of

lines 12-17,
- The sub-array A[p K-1] contains the k - p
smallest elements of L[1 n,+1] and RJ1

....n,+1], in sorted order.

- Moreover, L[i] and R[j] are the smallest elements
of their arrays that have not been copied back into
A.

Design and Analysis of Algorithm

LOOP INVARIANT
<

e Initialization:

— Prior to the first iteration of the loop, we have k =
P, so k-p=0 and the sub-array A[p.....k-1] is empty
and since | = | = 1, both L[i] and R[j] are the
smallest elements of their arrays that have not
been copied back into A.

— Maintenance: ?
— Termination: ?

Design and Analysis of Algorithm

ANALYZING DIVIDE-AND-CONQUER
ALGORITHMS

e \When an algorithm contains a recursive call to
itself, its running time Is often described by a
recurrence equation or recurrence

e Recurrence equation or recurrence describes
the overall running time on a problem of size n
In terms of the running time on smaller inputs.

e Mathematical tools are then used to solve the
recurrence and to provide bounds on the
performance of the algorithm.

Design and Analysis of Algorithm

ANALYZING DIVIDE-AND-CONQUER
ALGORITHMS

@(1) if??‘i:c,

Fln) = |
) al(n/b)+ D(n)+ C(n) otherwise .

e Here

- Suppose that the division of the problem yields a sub-problems, each
of which is 1/b the size of the original.

_ It takes time T(n/b) to solve one sub-problem of size n/b, and so it
takes time a’T(n/b) to solve a of them.

- D(n) is the time to divide the problem into sub-problems and

- C(n) is the time to combine the solutions to the sub-problems into the

solution to the original problem,
Design and Analysis of Algorithm

ANALYSIS OF MERGE SORT
ALGORITHM

e Divide: The divide step just computes the middle
of the sub-array, which takes constant time. Thus,
D(n) = 6(1).

e Conquer: We recursively solve two sub-
problems, each of size n/2, which contributes
2T(n/2) to the running time.

e Combine: We have already noted that the
MERGE procedure on an n-element sub-array
takes time 6(n), and so C(n) = B(n).

Design and Analysis of Algorithm

ANALYSIS OF MERGE SORT
ALGORITHM

e Recurrence for the worst-case running time
T(n) of merge sort

\ e gda=1,
T(n)=
2T(nf2)+cen ifn>1,

Design and Analysis of Algorithm

