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Problem: Search
« /7

e We are given a list of records.
e Each record has an associated key.

e Give efficient algorithm for searching
for a record containing a particular key.

e Efficiency Is quantified In terms of
average time analysis (number of
comparisons) to retrieve an item.
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Search

Each record in list has an associated key.
In this example, the keys are ID numbers.

Given a particular key, how can we
efficiently retrieve the record from the list?
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Seqguential Search
.

e Step through array of records, one at a
time.

e Look for record with matching key.

e Search stops when
- Record with matching key is found

— Or when search has examined all records
without success.
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Pseudocode for Sequential Search
-

I/l Search for a desired item in the n array elements
I starting at a[first].

I/l Returns pointer to desired record if found.

I/l Otherwise, return NULL

fori=0;i1<n;1++)
if(afi]==item)
return &ali;
/I if we drop through loop, then desired item was not found
return NULL,;
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Sequential Search Analysis
-

e \What are the worst and average case
running times for serial search?

e \We must determine the O-notation for the
number of operations required in search.

e Number of operations depends on n, the
number of entries in the list.
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Worst Case Time for Sequential Search

e For an array of n elements, the worst case
time for serial search requires n array
accesses: O(n).

e Consider cases where we must loop over all

n records:

- Desired record appears in the last position of the
array

— Desired record does not appear in the array at all
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Average Case for Sequential Search

Assumptions:
1.  All keys are equally likely in a search
2. We always search for a key that is in the array

Example:
e We have an array of 10 records.

e |f search for the first record, then it requires 1 array
access, If the second, then 2 array accesses. etc.

The average of all these searches is:
(1+2+3+4+5+6+7+8+9+10)/10 = 5.5
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Average Case Time for Sequential
Search

Generalize for array size n.

Expression for average-case running time:
(1+2+...+n)/n = n(n+1)/2n = (n+1)/2

Therefore, average case time complexity for
sequential search is O(n).
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Binary Search
S

e Perhaps we can do better than O(n) In the
average case?

e Assume that we are give an array of records
that Is sorted. For instance:

- An array of records with integer keys sorted from
smallest to largest (e.g., ID numbers), or

- An array of records with string keys sorted In
alphabetical order (e.g., names).
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Binary Search Pseudocode
-

if(size == 0)
found = false;
else {

middle = index of approximate midpoint of array segment;
If(target == a[middle])
target has been found!
else if(target < a[middle])
search for target in area before midpoint;
else
search for target in area after midpoint;
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Binary Search

e Example: sorted array of integer keys. Target=7.

(or i1 (21 [3] [4] [5] [6]
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Binary Search

e Example: sorted array of integer keys. Target=7.

(or i1 (21 [3] [4] [5] [6]

A

Find approximate midpoint
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Binary Search

e Example: sorted array of integer keys. Target=7.

(or i1 (21 [3] [4] [5] [6]

A

Is 7 = midpoint key? NO.
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Binary Search

e Example: sorted array of integer keys. Target=7.

(or i1 (21 [3] [4] [5] [6]

A

Is 7 < midpoint key? YES.
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Binary Search
S

e Example: sorted array of integer keys. Target=7.

[O] [1]1  [2] [3]  [4] [5]  [6]

\ J
Y

Search for the target in the area before midpoint.

Design and Analysis of Algorithm



Binary Search

e Example: sorted array of integer keys. Target=7.

[2] [3]  [4] [5]  [6]

Find approximate midpoint
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Binary Search

e Example: sorted array of integer keys. Target=7.

Target = key of midpoint? NO.
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Binary Search

e Example: sorted array of integer keys. Target=7.

[2] [3]  [4] [5]  [6]

Target < key of midpoint? NO.
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Binary Search

e Example: sorted array of integer keys. Target=7.

Target > key of midpoint? YES.
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Binary Search

e Example: sorted array of integer keys. Target=7.

[O] [1]  [2] [3]  [4] [5]  [6]

Search for the target in the area after midpoint.
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Binary Search
-

e Example: sorted array of integer keys. Target=7.

[O] [1]  [2] [3]  [4] [5]  [6]

A

Find approximate midpoint.
|s target = midpoint key? YES.
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Relation to Binary Search Tree
-

Array of previous example:

3 6 7 11 32 33 53

Corresponding complete binary search tree

11

6 s
/ /
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Search for target =7

Find midpoint:

Start at root:
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Search for target = 7
-

Search left subarray:

\ J
Y

Search left subtree:
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Search for target = 7
S

Find approximate midpoint of

3

\ J
Y

Visit root of subtree:
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Search for target = 7
-

Search right subarray:

\_Y_}

Search right subtree:
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Binary Search: Analysis
-

e \Worst case complexity?

e \What is the maximum depth of recursive calls
In binary search as function of n?

e Each level in the recursion, we split the array
In half (divide by two).

e Therefore maximum recursion depth Is
floor(log,n) and worst case = O(log,n).

e Average case is also = O(log,n).
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