
By

Syed Bakhtawar Shah Abid

Lecturer in Computer Science

Analysis and Design of
Algorithms

Design and Analysis of Algorithm1

Problem: Search

 We are given a list of records.

 Each record has an associated key.

 Give efficient algorithm for searching

for a record containing a particular key.

 Efficiency is quantified in terms of

average time analysis (number of

comparisons) to retrieve an item.

Design and Analysis of Algorithm2

Search

Design and Analysis of Algorithm3

Sequential Search

 Step through array of records, one at a

time.

 Look for record with matching key.

 Search stops when

– Record with matching key is found

– Or when search has examined all records

without success.

Design and Analysis of Algorithm4

Pseudocode for Sequential Search

// Search for a desired item in the n array elements

// starting at a[first].

// Returns pointer to desired record if found.

// Otherwise, return NULL

…

for(i = 0; i < n; i ++)

if(a[i]==item)

return &a[i];

// if we drop through loop, then desired item was not found

return NULL;

Design and Analysis of Algorithm5

Sequential Search Analysis

 What are the worst and average case

running times for serial search?

 We must determine the O-notation for the

number of operations required in search.

 Number of operations depends on n, the

number of entries in the list.

Design and Analysis of Algorithm6

Worst Case Time for Sequential Search

 For an array of n elements, the worst case

time for serial search requires n array

accesses: O(n).

 Consider cases where we must loop over all

n records:

– Desired record appears in the last position of the

array

– Desired record does not appear in the array at all

Design and Analysis of Algorithm7

Average Case for Sequential Search

Assumptions:
1. All keys are equally likely in a search

2. We always search for a key that is in the array

Example:

 We have an array of 10 records.

 If search for the first record, then it requires 1 array
access; if the second, then 2 array accesses. etc.

The average of all these searches is:
(1+2+3+4+5+6+7+8+9+10)/10 = 5.5

Design and Analysis of Algorithm8

Average Case Time for Sequential
Search

Generalize for array size n.

Expression for average-case running time:

(1+2+…+n)/n = n(n+1)/2n = (n+1)/2

Therefore, average case time complexity for
sequential search is O(n).

Design and Analysis of Algorithm9

Binary Search

 Perhaps we can do better than O(n) in the

average case?

 Assume that we are give an array of records

that is sorted. For instance:

– An array of records with integer keys sorted from

smallest to largest (e.g., ID numbers), or

– An array of records with string keys sorted in

alphabetical order (e.g., names).

Design and Analysis of Algorithm10

Binary Search Pseudocode

if(size == 0)

found = false;

else {

middle = index of approximate midpoint of array segment;

if(target == a[middle])

target has been found!

else if(target < a[middle])

search for target in area before midpoint;

else

search for target in area after midpoint;

}

Design and Analysis of Algorithm11

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm12

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm13

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm14

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Is 7 = midpoint key? NO.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm15

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Is 7 < midpoint key? YES.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm16

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Search for the target in the area before midpoint.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm17

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm18

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target = key of midpoint? NO.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm19

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target < key of midpoint? NO.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm20

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target > key of midpoint? YES.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm21

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Search for the target in the area after midpoint.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm22

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint.

Is target = midpoint key? YES.

Relation to Binary Search Tree

Design and Analysis of Algorithm23

Corresponding complete binary search tree

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Array of previous example:

Search for target = 7

Design and Analysis of Algorithm24

Start at root:

Find midpoint:

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Search for target = 7

Design and Analysis of Algorithm25

Search left subarray:

Search left subtree:

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Search for target = 7

Design and Analysis of Algorithm26

Find approximate midpoint of

subarray:

Visit root of subtree:

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Search for target = 7

Design and Analysis of Algorithm27

Search right subarray:

Search right subtree:

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Binary Search: Analysis

 Worst case complexity?

 What is the maximum depth of recursive calls
in binary search as function of n?

 Each level in the recursion, we split the array
in half (divide by two).

 Therefore maximum recursion depth is
floor(log2n) and worst case = O(log2n).

 Average case is also = O(log2n).

Design and Analysis of Algorithm28

