Analysis and Design of
Algorithms

By
Syed Bakhtawar Shah Abid
Lecturer in Computer Science

Design and Analysis of Algorithm

Problem: Search
« /7

e We are given a list of records.
e Each record has an associated key.

e Give efficient algorithm for searching
for a record containing a particular key.

e Efficiency Is quantified In terms of
average time analysis (number of
comparisons) to retrieve an item.

Design and Analysis of Algorithm

Search

Each record in list has an associated key.
In this example, the keys are ID numbers.

Given a particular key, how can we
efficiently retrieve the record from the list?

Design and Analysis of Algorithm

Seqguential Search
.

e Step through array of records, one at a
time.

e Look for record with matching key.

e Search stops when
- Record with matching key is found

— Or when search has examined all records
without success.

Design and Analysis of Algorithm

Pseudocode for Sequential Search
-

I/l Search for a desired item in the n array elements
I starting at a[first].

I/l Returns pointer to desired record if found.

I/l Otherwise, return NULL

fori=0;i1<n;1++)
if(afi]==item)
return &ali;
/I if we drop through loop, then desired item was not found
return NULL,;

Design and Analysis of Algorithm

Sequential Search Analysis
-

e \What are the worst and average case
running times for serial search?

e \We must determine the O-notation for the
number of operations required in search.

e Number of operations depends on n, the
number of entries in the list.

Design and Analysis of Algorithm

Worst Case Time for Sequential Search

e For an array of n elements, the worst case
time for serial search requires n array
accesses: O(n).

e Consider cases where we must loop over all

n records:

- Desired record appears in the last position of the
array

— Desired record does not appear in the array at all

Design and Analysis of Algorithm

Average Case for Sequential Search

Assumptions:
1. All keys are equally likely in a search
2. We always search for a key that is in the array

Example:
e We have an array of 10 records.

e |f search for the first record, then it requires 1 array
access, If the second, then 2 array accesses. etc.

The average of all these searches is:
(1+2+3+4+5+6+7+8+9+10)/10 = 5.5

Design and Analysis of Algorithm

Average Case Time for Sequential
Search

Generalize for array size n.

Expression for average-case running time:
(1+2+...+n)/n = n(n+1)/2n = (n+1)/2

Therefore, average case time complexity for
sequential search is O(n).

Design and Analysis of Algorithm

Binary Search
S

e Perhaps we can do better than O(n) In the
average case?

e Assume that we are give an array of records
that Is sorted. For instance:

- An array of records with integer keys sorted from
smallest to largest (e.g., ID numbers), or

- An array of records with string keys sorted In
alphabetical order (e.g., names).

Design and Analysis of Algorithm

Binary Search Pseudocode
-

if(size == 0)
found = false;
else {

middle = index of approximate midpoint of array segment;
If(target == a[middle])
target has been found!
else if(target < a[middle])
search for target in area before midpoint;
else
search for target in area after midpoint;

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

(or i1 (21 [3] [4] [5] [6]

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

(or i1 (21 [3] [4] [5] [6]

A

Find approximate midpoint

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

(or i1 (21 [3] [4] [5] [6]

A

Is 7 = midpoint key? NO.

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

(or i1 (21 [3] [4] [5] [6]

A

Is 7 < midpoint key? YES.

Design and Analysis of Algorithm

Binary Search
S

e Example: sorted array of integer keys. Target=7.

[O] [1]1 [2] [3] [4] [5] [6]

\ J
Y

Search for the target in the area before midpoint.

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

[2] [3] [4] [5] [6]

Find approximate midpoint

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

Target = key of midpoint? NO.

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

[2] [3] [4] [5] [6]

Target < key of midpoint? NO.

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

Target > key of midpoint? YES.

Design and Analysis of Algorithm

Binary Search

e Example: sorted array of integer keys. Target=7.

[O] [1] [2] [3] [4] [5] [6]

Search for the target in the area after midpoint.

Design and Analysis of Algorithm

Binary Search
-

e Example: sorted array of integer keys. Target=7.

[O] [1] [2] [3] [4] [5] [6]

A

Find approximate midpoint.
|s target = midpoint key? YES.

Design and Analysis of Algorithm

Relation to Binary Search Tree
-

Array of previous example:

3 6 7 11 32 33 53

Corresponding complete binary search tree

11

6 s
/ /

Design and Analysis of Algorithm

Search for target =7

Find midpoint:

Start at root:

Design and Analysis of Algorithm

Search for target = 7
-

Search left subarray:

\ J
Y

Search left subtree:

Design and Analysis of Algorithm

Search for target = 7
S

Find approximate midpoint of

3

\ J
Y

Visit root of subtree:

Design and Analysis of Algorithm

Search for target = 7
-

Search right subarray:

Y}

Search right subtree:

Design and Analysis of Algorithm

Binary Search: Analysis
-

e \Worst case complexity?

e \What is the maximum depth of recursive calls
In binary search as function of n?

e Each level in the recursion, we split the array
In half (divide by two).

e Therefore maximum recursion depth Is
floor(log,n) and worst case = O(log,n).

e Average case is also = O(log,n).

Design and Analysis of Algorithm

