Analysis and Design of Algorithms

By Syed Bakhtawar Shah Abid Lecturer in Computer Science

Problem: Search

- We are given a list of records.
- Each record has an associated key.
- Give efficient algorithm for searching for a record containing a particular key.
- Efficiency is quantified in terms of average time analysis (number of comparisons) to retrieve an item.

Search

[0] [1]

[2]

[3]

[4]

Each record in list has an associated key. In this example, the keys are ID numbers.

Given a particular key, how can we efficiently retrieve the record from the list?

Number 580625685

Sequential Search

- Step through array of records, one at a time.
- Look for record with matching key.
- Search stops when
 - Record with matching key is found
 - Or when search has examined all records without success.

Pseudocode for Sequential Search

```
// Search for a desired item in the n array elements
// starting at a[first].
// Returns pointer to desired record if found.
// Otherwise, return NULL
```

```
for(i = 0; i < n; i ++ )

if(a[i]==item)

return &a[i];

// if we drop through loop, then desired item was not found

return NULL;
```

. . .

Sequential Search Analysis

- What are the worst and average case running times for serial search?
- We must determine the O-notation for the number of operations required in search.
- Number of operations depends on *n*, the number of entries in the list.

Worst Case Time for Sequential Search

- For an array of *n* elements, the worst case time for serial search requires *n* array accesses: O(*n*).
- Consider cases where we must loop over all n records:
 - Desired record appears in the last position of the array
 - Desired record does not appear in the array at all

Average Case for Sequential Search

Assumptions:

- 1. All keys are equally likely in a search
- 2. We always search for a key that is in the array **Example:**
- We have an array of 10 records.
- If search for the first record, then it requires 1 array access; if the second, then 2 array accesses. *etc.*

The average of all these searches is:

(1+2+3+4+5+6+7+8+9+10)/10 = 5.5

Average Case Time for Sequential Search

Generalize for array size *n*.

Expression for average-case running time: (1+2+...+n)/n = n(n+1)/2n = (n+1)/2 Therefore, average case time complexity for sequential search is O(n).

- Perhaps we can do better than O(n) in the average case?
- Assume that we are give an array of records that is sorted. For instance:
 - An array of records with integer keys sorted from smallest to largest (e.g., ID numbers), or
 - An array of records with string keys sorted in alphabetical order (e.g., names).

Binary Search Pseudocode

```
if(size == 0)
   found = false;
else {
        middle = index of approximate midpoint of array segment;
        if(target == a[middle])
                 target has been found!
        else if(target < a[middle])
                 search for target in area before midpoint;
        else
                 search for target in area after midpoint;
}
```

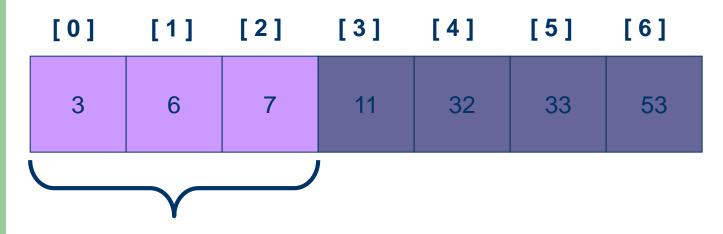
[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53

[0]	[1]	[2]	[3]	[4]	[5]	[6]			
3	6	7	11	32	33	53			
	Find approximate midpoint								

[0]	[1]	[2]	[3]	[4]	[5]	[6]		
3	6	7	11	32	33	53		
Is 7 = midpoint key? NO.								

[0]	[1]	[2]	[3]	[4]	[5]	[6]			
3	6	7	11	32	33	53			
		IS / <	miapoint	key? YES	D .				

• Example: sorted array of integer keys. Target=7.



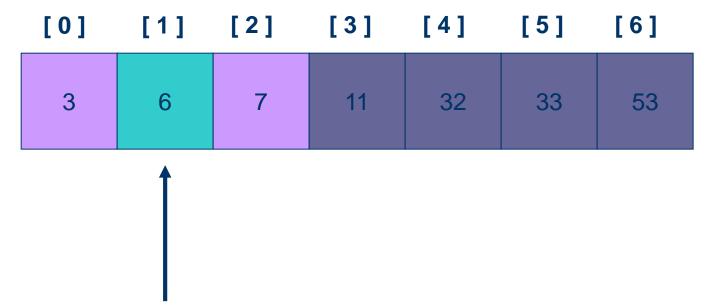
Search for the target in the area before midpoint.

• Example: sorted array of integer keys. Target=7.

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53

Find approximate midpoint

• Example: sorted array of integer keys. Target=7.



Target = key of midpoint? NO.

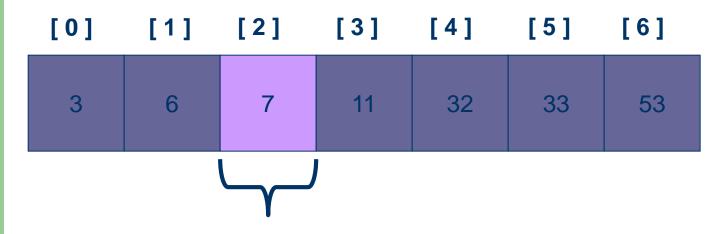
	[0]	[1]	[2]	[3]	[4]	[5]	[6]
	3	6	7	11	32	33	53
Та	rget < ke	y of midp	oint? NO				

• Example: sorted array of integer keys. Target=7.

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53
	1					

Target > key of midpoint? YES.

• Example: sorted array of integer keys. Target=7.



Search for the target in the area after midpoint.

• Example: sorted array of integer keys. Target=7.

[0]	[1]	[2]	[3]	[4]	[5]	[6]
3	6	7	11	32	33	53

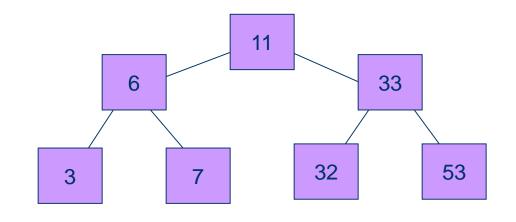
Find approximate midpoint. Is target = midpoint key? YES.

Relation to Binary Search Tree

Array of previous example:

3 6 7	11	32	33	53
-------	----	----	----	----

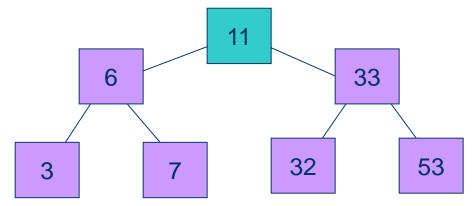
Corresponding complete binary search tree



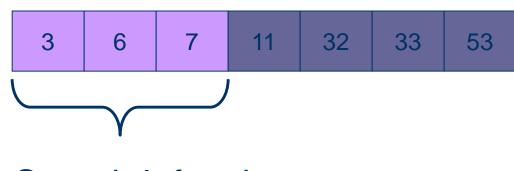
Find midpoint:

3 6 7	11	32	33	53
-------	----	----	----	----

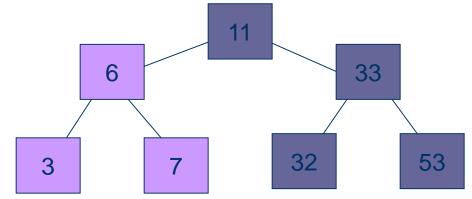
Start at root:



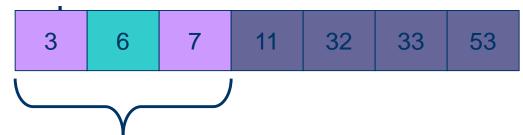
Search left subarray:



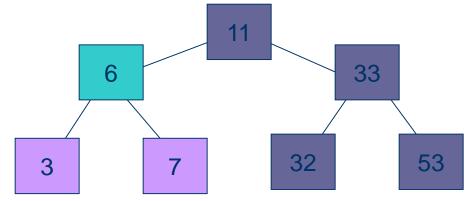
Search left subtree:



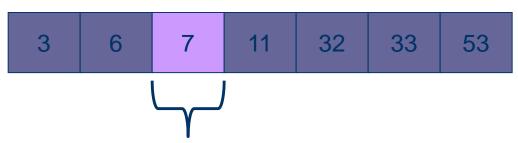
Find approximate midpoint of



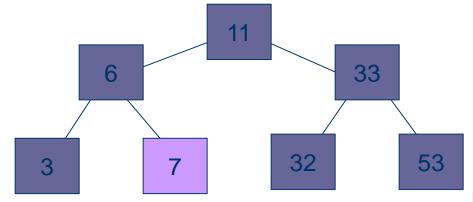
Visit root of subtree:



Search right subarray:



Search right subtree:



Binary Search: Analysis

- Worst case complexity?
- What is the maximum depth of recursive calls in binary search as function of *n*?
- Each level in the recursion, we split the array in half (divide by two).
- Therefore maximum recursion depth is $floor(log_2n)$ and worst case = $O(log_2n)$.
- Average case is also = $O(\log_2 n)$.