
By

Syed Bakhtawar Shah Abid

Lecturer in Computer Science

Analysis and Design of
Algorithms

Design and Analysis of Algorithm1

Problem: Search

 We are given a list of records.

 Each record has an associated key.

 Give efficient algorithm for searching

for a record containing a particular key.

 Efficiency is quantified in terms of

average time analysis (number of

comparisons) to retrieve an item.

Design and Analysis of Algorithm2

Search

Design and Analysis of Algorithm3

Sequential Search

 Step through array of records, one at a

time.

 Look for record with matching key.

 Search stops when

– Record with matching key is found

– Or when search has examined all records

without success.

Design and Analysis of Algorithm4

Pseudocode for Sequential Search

// Search for a desired item in the n array elements

// starting at a[first].

// Returns pointer to desired record if found.

// Otherwise, return NULL

…

for(i = 0; i < n; i ++)

if(a[i]==item)

return &a[i];

// if we drop through loop, then desired item was not found

return NULL;

Design and Analysis of Algorithm5

Sequential Search Analysis

 What are the worst and average case

running times for serial search?

 We must determine the O-notation for the

number of operations required in search.

 Number of operations depends on n, the

number of entries in the list.

Design and Analysis of Algorithm6

Worst Case Time for Sequential Search

 For an array of n elements, the worst case

time for serial search requires n array

accesses: O(n).

 Consider cases where we must loop over all

n records:

– Desired record appears in the last position of the

array

– Desired record does not appear in the array at all

Design and Analysis of Algorithm7

Average Case for Sequential Search

Assumptions:
1. All keys are equally likely in a search

2. We always search for a key that is in the array

Example:

 We have an array of 10 records.

 If search for the first record, then it requires 1 array
access; if the second, then 2 array accesses. etc.

The average of all these searches is:
(1+2+3+4+5+6+7+8+9+10)/10 = 5.5

Design and Analysis of Algorithm8

Average Case Time for Sequential
Search

Generalize for array size n.

Expression for average-case running time:

(1+2+…+n)/n = n(n+1)/2n = (n+1)/2

Therefore, average case time complexity for
sequential search is O(n).

Design and Analysis of Algorithm9

Binary Search

 Perhaps we can do better than O(n) in the

average case?

 Assume that we are give an array of records

that is sorted. For instance:

– An array of records with integer keys sorted from

smallest to largest (e.g., ID numbers), or

– An array of records with string keys sorted in

alphabetical order (e.g., names).

Design and Analysis of Algorithm10

Binary Search Pseudocode

if(size == 0)

found = false;

else {

middle = index of approximate midpoint of array segment;

if(target == a[middle])

target has been found!

else if(target < a[middle])

search for target in area before midpoint;

else

search for target in area after midpoint;

}

Design and Analysis of Algorithm11

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm12

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm13

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm14

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Is 7 = midpoint key? NO.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm15

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Is 7 < midpoint key? YES.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm16

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Search for the target in the area before midpoint.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm17

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm18

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target = key of midpoint? NO.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm19

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target < key of midpoint? NO.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm20

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Target > key of midpoint? YES.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm21

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Search for the target in the area after midpoint.

Binary Search

 Example: sorted array of integer keys. Target=7.

Design and Analysis of Algorithm22

[0] [1]

3 6 7 11 32 33 53

[2] [3] [4] [5] [6]

Find approximate midpoint.

Is target = midpoint key? YES.

Relation to Binary Search Tree

Design and Analysis of Algorithm23

Corresponding complete binary search tree

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Array of previous example:

Search for target = 7

Design and Analysis of Algorithm24

Start at root:

Find midpoint:

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Search for target = 7

Design and Analysis of Algorithm25

Search left subarray:

Search left subtree:

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Search for target = 7

Design and Analysis of Algorithm26

Find approximate midpoint of

subarray:

Visit root of subtree:

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Search for target = 7

Design and Analysis of Algorithm27

Search right subarray:

Search right subtree:

3 6 7 11 32 33 53

3

6

7

11

32

33

53

Binary Search: Analysis

 Worst case complexity?

 What is the maximum depth of recursive calls
in binary search as function of n?

 Each level in the recursion, we split the array
in half (divide by two).

 Therefore maximum recursion depth is
floor(log2n) and worst case = O(log2n).

 Average case is also = O(log2n).

Design and Analysis of Algorithm28

