
Analysis of Algorithms1

Analysis and Design of
Algorithms

By

Syed Bakhtawar Shah Abid

Lecturer in Computer Science

Information

 Textbook

– Introduction to Algorithms 2nd ,Cormen,

Leiserson, Rivest and Stein, The MIT Press, 2001.

 Others
– Introduction to Design & Analysis Computer Algorithm

3rd, Sara Baase, Allen Van Gelder, Adison-Wesley, 2000.

– Algorithms, Richard Johnsonbaugh, Marcus Schaefer,

Prentice Hall, 2004.

– Introduction to The Design and Analysis of Algorithms

2nd Edition, Anany Levitin, Adison-Wesley, 2007.

2 Analysis of Algorithms

Course Objectives

 This course introduces students to the analysis and

design of computer algorithms. Upon completion of

this course, students will be able to do the following:

– Analyze the asymptotic performance of algorithms.

– Demonstrate a familiarity with major algorithms and data

structures.

– Apply important algorithmic design paradigms and methods

of analysis.

– Synthesize efficient algorithms in common engineering

design situations.

Analysis of Algorithms3

What is Algorithm?

 Algorithm

– Is any well-defined computational procedure that

takes some value, or set of values, as input and

produces some value, or set of values, as output.

– is thus a sequence of computational steps that

transform the input into the output.

– Is a tool for solving a well - specified

computational problem.

– Any special method of solving a certain kind of

problem (Webster Dictionary)
Analysis of Algorithms4

Analysis of Algorithms5

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax  A[0] ?

for i  1 to n  1 do ?

if A[i]  currentMax then ?

currentMax  A[i] ?

{ increment counter i } ?

return currentMax ?

Total ?

What is a program?

 A program is the expression of an

algorithm in a programming

language

 A set of instructions which the

computer will follow to solve a

problem

Analysis of Algorithms6

Assignment#1

 Write a program implementing
the algorithm

 Run the program with inputs
of varying size and
composition

 Use a function, like the built-in
clock() function, to get an
accurate measure of the
actual running time

 Plot the results

Analysis of Algorithms7

Design and Analysis

 Design

– The design pertains to

 The description of an algorithm at an abstract level by

means of pseudocode and

 Proof of correctness that is, the algorithm solves the

given problem in all cases

 Analysis

– The analysis deals with performance evaluation

(complexity analysis)

Analysis of Algorithms8

Algorithm development process

Analysis of Algorithms9

Approaches to Algorithm Design

 Learn general approaches to algorithm design

– Divide and conquer

– Greedy method

– Dynamic Programming

– Basic Search and Traversal Technique

– Graph Theory

– Linear Programming

– Approximation Algorithm

– NP Problem

Analysis of Algorithms10

Approaches to Algorithm Design

 Examine methods of analyzing algorithm correctness and

efficiency

 Decide whether some problems have no solution in reasonable

time

– List all permutations of n objects (takes n! steps)

– Travelling salesman problem

 Investigate memory usage as a different measure of efficiency

Analysis of Algorithms11

Some Application

 Study problems these techniques can be

applied to

– sorting

– data retrieval

– network routing

– Games

– etc

Analysis of Algorithms12

The study of Algorithm

 How to devise algorithms

 How to express algorithms

 How to validate algorithms

 How to analyze algorithms

 How to test a program

13 Analysis of Algorithms

Importance of Analysis

 Need to recognize limitations of various algorithms for solving a

problem

 Need to understand relationship between problem size and

running time
– When is a running program not good enough?

 Need to learn how to analyze an algorithm's running time

without coding it

 Need to learn techniques for writing more efficient code

 Need to recognize bottlenecks in code as well as which parts of

code are easiest to optimize

Analysis of Algorithms14

Why do we analyze about them?

Understand their behavior,

and

Improve them. (Research)

15 Analysis of Algorithms

What do we analyze about them?

 Correctness

– Does the input/output relation match

algorithm requirement?

 Amount of work done (aka complexity)

– Basic operations to do task

 Amount of space used

– Memory used

16 Analysis of Algorithms

What do we analyze about them?

 Simplicity, clarity

– Verification and implementation.

 Optimality

– Is it impossible to do better?

17 Analysis of Algorithms

Complexity

 The complexity of an algorithm is simply the

amount of work the algorithm performs to

complete its task.

18 Analysis of Algorithms

What’s more important than performance?

 Modularity

 Correctness

 Maintainability

 Functionality

 Robustness

 User-friendliness

 Programmer time

 Simplicity

 Extensibility

 Reliability

Analysis of Algorithms19

The Selection Problem

 Problem: given a group of n numbers,

determine the kth largest

 Algorithm 1

– Store numbers in an array

– Sort the array in descending order

– Return the number in position k

20 Analysis of Algorithms

The Selection Problem

 Algorithm 2

– Store first k numbers in an array

– Sort the array in descending order

– For each remaining number, if the number is larger than the

kth number, insert the number in the correct position of the

array

– Return the number in position k

Which algorithm is better?
21 Analysis of Algorithms

Define Problem

 Problem:

– Description of Input-Output relationship

 Algorithm:

– A sequence of computational step that transform the input

into the output.

 Data Structure:

– An organized method of storing and retrieving data.

 Our task:

– Given a problem, design a correct and good algorithm

that solves it.

Analysis of Algorithms22

Example Algorithm A

Analysis of Algorithms23

Problem: The input is a sequence of integers stored

in array. Output the minimum.

Algorithm A

Which algorithm is better?

The algorithms are correct, but which

is the best?

 Measure the running time (number of

operations needed).

 Measure the amount of memory

used.

 Note that the running time of the

algorithms increase as the size of the

input increases.

Analysis of Algorithms24

Correctness: Whether the algorithm computes

the correct solution for all instances

Efficiency: Resources needed by the algorithm

1. Time: Number of steps.

2. Space: amount of memory used.

Measurement “model”: Worst case, Average case

and Best case.

What do we need?

Analysis of Algorithms25

Running Time

 Most algorithms transform
input objects into output
objects.

 The running time of an
algorithm typically grows with
the input size.

 Average case time is often
difficult to determine.

 We focus on the worst case
running time.

– Easier to analyze

– Crucial to applications such as
games, finance and robotics

Analysis of Algorithms26

What is Algorithm Analysis?

 How to estimate the time required for an

algorithm

 Techniques that drastically reduce the

running time of an algorithm

 A mathemactical framwork that more

rigorously describes the running time of an

algorithm

27 Analysis of Algorithms

Theoretical analysis of running time

 Theoretical analysis

– Uses the pseudocode description of an algorithm

rather than the actual implementation

– Characterizes running time as a function of the

input size n

– Takes into account all possible inputs

– Allows us to evaluate the speed of an algorithm

independent of the hardware/software

environment (Random Access Machine (RAM))

Analysis of Algorithms28

Input Size

 Time and space complexity

– This is generally a function of the input size

 E.g., sorting, multiplication

– How we characterize input size depends:

 Sorting: number of input items

 Multiplication: total number of bits

 Graph algorithms: number of nodes & edges

 Etc

29 Analysis of Algorithms

Running Time

 Number of primitive steps that are executed

– Except for time of executing a function call, most

statements roughly require the same amount of

time

 y = m * x + b

 c = 5 / 9 * (t - 32)

 z = f(x) + g(y)

 We can be more exact if need be

30 Analysis of Algorithms

Analysis

 Worst case

– Provides an upper bound on running time

– An absolute guarantee

 Average case

– Provides the expected running time

– Very useful, but treat with care: what is

“average”?

 Random (equally likely) inputs

 Real-life inputs

31 Analysis of Algorithms

