
Analysis of Algorithms1

Analysis and Design of
Algorithms

By

Syed Bakhtawar Shah Abid

Lecturer in Computer Science

Information

 Textbook

– Introduction to Algorithms 2nd ,Cormen,

Leiserson, Rivest and Stein, The MIT Press, 2001.

 Others
– Introduction to Design & Analysis Computer Algorithm

3rd, Sara Baase, Allen Van Gelder, Adison-Wesley, 2000.

– Algorithms, Richard Johnsonbaugh, Marcus Schaefer,

Prentice Hall, 2004.

– Introduction to The Design and Analysis of Algorithms

2nd Edition, Anany Levitin, Adison-Wesley, 2007.

2 Analysis of Algorithms

Course Objectives

 This course introduces students to the analysis and

design of computer algorithms. Upon completion of

this course, students will be able to do the following:

– Analyze the asymptotic performance of algorithms.

– Demonstrate a familiarity with major algorithms and data

structures.

– Apply important algorithmic design paradigms and methods

of analysis.

– Synthesize efficient algorithms in common engineering

design situations.

Analysis of Algorithms3

What is Algorithm?

 Algorithm

– Is any well-defined computational procedure that

takes some value, or set of values, as input and

produces some value, or set of values, as output.

– is thus a sequence of computational steps that

transform the input into the output.

– Is a tool for solving a well - specified

computational problem.

– Any special method of solving a certain kind of

problem (Webster Dictionary)
Analysis of Algorithms4

Analysis of Algorithms5

Counting Primitive Operations

 By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

Algorithm arrayMax(A, n) # operations
currentMax A[0] ?

for i 1 to n 1 do ?

if A[i] currentMax then ?

currentMax A[i] ?

{ increment counter i } ?

return currentMax ?

Total ?

What is a program?

 A program is the expression of an

algorithm in a programming

language

 A set of instructions which the

computer will follow to solve a

problem

Analysis of Algorithms6

Assignment#1

 Write a program implementing
the algorithm

 Run the program with inputs
of varying size and
composition

 Use a function, like the built-in
clock() function, to get an
accurate measure of the
actual running time

 Plot the results

Analysis of Algorithms7

Design and Analysis

 Design

– The design pertains to

 The description of an algorithm at an abstract level by

means of pseudocode and

 Proof of correctness that is, the algorithm solves the

given problem in all cases

 Analysis

– The analysis deals with performance evaluation

(complexity analysis)

Analysis of Algorithms8

Algorithm development process

Analysis of Algorithms9

Approaches to Algorithm Design

 Learn general approaches to algorithm design

– Divide and conquer

– Greedy method

– Dynamic Programming

– Basic Search and Traversal Technique

– Graph Theory

– Linear Programming

– Approximation Algorithm

– NP Problem

Analysis of Algorithms10

Approaches to Algorithm Design

 Examine methods of analyzing algorithm correctness and

efficiency

 Decide whether some problems have no solution in reasonable

time

– List all permutations of n objects (takes n! steps)

– Travelling salesman problem

 Investigate memory usage as a different measure of efficiency

Analysis of Algorithms11

Some Application

 Study problems these techniques can be

applied to

– sorting

– data retrieval

– network routing

– Games

– etc

Analysis of Algorithms12

The study of Algorithm

 How to devise algorithms

 How to express algorithms

 How to validate algorithms

 How to analyze algorithms

 How to test a program

13 Analysis of Algorithms

Importance of Analysis

 Need to recognize limitations of various algorithms for solving a

problem

 Need to understand relationship between problem size and

running time
– When is a running program not good enough?

 Need to learn how to analyze an algorithm's running time

without coding it

 Need to learn techniques for writing more efficient code

 Need to recognize bottlenecks in code as well as which parts of

code are easiest to optimize

Analysis of Algorithms14

Why do we analyze about them?

Understand their behavior,

and

Improve them. (Research)

15 Analysis of Algorithms

What do we analyze about them?

 Correctness

– Does the input/output relation match

algorithm requirement?

 Amount of work done (aka complexity)

– Basic operations to do task

 Amount of space used

– Memory used

16 Analysis of Algorithms

What do we analyze about them?

 Simplicity, clarity

– Verification and implementation.

 Optimality

– Is it impossible to do better?

17 Analysis of Algorithms

Complexity

 The complexity of an algorithm is simply the

amount of work the algorithm performs to

complete its task.

18 Analysis of Algorithms

What’s more important than performance?

 Modularity

 Correctness

 Maintainability

 Functionality

 Robustness

 User-friendliness

 Programmer time

 Simplicity

 Extensibility

 Reliability

Analysis of Algorithms19

The Selection Problem

 Problem: given a group of n numbers,

determine the kth largest

 Algorithm 1

– Store numbers in an array

– Sort the array in descending order

– Return the number in position k

20 Analysis of Algorithms

The Selection Problem

 Algorithm 2

– Store first k numbers in an array

– Sort the array in descending order

– For each remaining number, if the number is larger than the

kth number, insert the number in the correct position of the

array

– Return the number in position k

Which algorithm is better?
21 Analysis of Algorithms

Define Problem

 Problem:

– Description of Input-Output relationship

 Algorithm:

– A sequence of computational step that transform the input

into the output.

 Data Structure:

– An organized method of storing and retrieving data.

 Our task:

– Given a problem, design a correct and good algorithm

that solves it.

Analysis of Algorithms22

Example Algorithm A

Analysis of Algorithms23

Problem: The input is a sequence of integers stored

in array. Output the minimum.

Algorithm A

Which algorithm is better?

The algorithms are correct, but which

is the best?

 Measure the running time (number of

operations needed).

 Measure the amount of memory

used.

 Note that the running time of the

algorithms increase as the size of the

input increases.

Analysis of Algorithms24

Correctness: Whether the algorithm computes

the correct solution for all instances

Efficiency: Resources needed by the algorithm

1. Time: Number of steps.

2. Space: amount of memory used.

Measurement “model”: Worst case, Average case

and Best case.

What do we need?

Analysis of Algorithms25

Running Time

 Most algorithms transform
input objects into output
objects.

 The running time of an
algorithm typically grows with
the input size.

 Average case time is often
difficult to determine.

 We focus on the worst case
running time.

– Easier to analyze

– Crucial to applications such as
games, finance and robotics

Analysis of Algorithms26

What is Algorithm Analysis?

 How to estimate the time required for an

algorithm

 Techniques that drastically reduce the

running time of an algorithm

 A mathemactical framwork that more

rigorously describes the running time of an

algorithm

27 Analysis of Algorithms

Theoretical analysis of running time

 Theoretical analysis

– Uses the pseudocode description of an algorithm

rather than the actual implementation

– Characterizes running time as a function of the

input size n

– Takes into account all possible inputs

– Allows us to evaluate the speed of an algorithm

independent of the hardware/software

environment (Random Access Machine (RAM))

Analysis of Algorithms28

Input Size

 Time and space complexity

– This is generally a function of the input size

 E.g., sorting, multiplication

– How we characterize input size depends:

 Sorting: number of input items

 Multiplication: total number of bits

 Graph algorithms: number of nodes & edges

 Etc

29 Analysis of Algorithms

Running Time

 Number of primitive steps that are executed

– Except for time of executing a function call, most

statements roughly require the same amount of

time

 y = m * x + b

 c = 5 / 9 * (t - 32)

 z = f(x) + g(y)

 We can be more exact if need be

30 Analysis of Algorithms

Analysis

 Worst case

– Provides an upper bound on running time

– An absolute guarantee

 Average case

– Provides the expected running time

– Very useful, but treat with care: what is

“average”?

 Random (equally likely) inputs

 Real-life inputs

31 Analysis of Algorithms

