
Yasir Ahmad
Visiting Faculty Member

From
ICS & IT Department

The University Of Agriculture Peshawar

1

Programming Languages II -- Java

An Introduction to
Programming in Java

About the Course

• You should already:

– be a competent programmer in a programming
language like C, C++ etc.

– have a good understanding of object oriented
programming

Course Contents

• Introduction to Programming in Java

• Object Oriented Programming in Java

• Java Threads

• File Handling

• GUI

• Other Topics
– Servlets

– Exceptions

Resources

• Online Resources

– http://docs.oracle.com/javase/tutorial/java/TOC.html

– The Java Language Specification, Java SE 7 Edition

– The Java Virtual Machine Specification, Java SE 7
Edition (mostly for further reading)

• Java How to Program: Early Objects Version (8th

Edition) by Paul and Harvey Deitel

• Other books – look for Java 1.5 (at least) or later

http://docs.oracle.com/javase/tutorial/java/TOC.html

Java Hello World

/* This is a hello world example in Java
that will simply display Hello World
on the monitor */

public class HelloWorld
{

public static void main(String args[])
{

System.out.println(“Hello World”);
}

}

An idiom(محاورے) explained

You will see the following line of code often:
public static void main(String args[]) { …}

About main()
“main” is the function from which your program starts

Why public?
So that run time can call it from outside

Why static ?
it is made static so that we can call it without creating an object

What is String args[] ?
Way of specifying input at startup of application

7

Java—Why?

• Portable - Write Once, Run Anywhere

• Security has been well thought through

• Robust memory management

• Designed for network programming

• Multi-threaded (multiple simultaneous tasks)

• Dynamic & extensible (loads of libraries)

– Classes stored in separate files

– Loaded only when needed

Comments

/* This is a hello world example in Java

* that will simply display Hello World

* on the monitor */

• Block Comment at start to describe purpose
– /* … comment …*/

• Line comments used between statements
– // comment

7

Class

public class HelloWorld {

. . .

}

• At least one class per java file
– Starts with keyword public class

– Followed by class name

• All names have rules to follow
• Each word in class name starts in uppercase (convention)

• No punctuation (except underscore) and no spaces

• Do not start with a number

• Java file name must be same as class name

8

Main method

public class HelloWorld {

public static void main(String[] args) {

. . .

}

}

• Java classes are structured into methods
– Each java application must have one main

method

• Main method always has same signature
– Other methods differ

9

Statements

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World!");

}

}

• Statements are terminated by semicolon

• Statements consist of construct and
expression
– Construct is the command

– Expression is the data to be enacted upon

10

Compiling and Executing Java
Programs

• Compilation

javac classname.java

•Execution

java classname

The Java Virtual Machine (JVM)

• Run-time Environment for Java programs.

• The JVM is machine dependent.

• The .class files contain Java bytecodes.

• Provides platform independence: Any platform
having a JVM can execute the class files.

• The class files have a defined format that is
followed by the Java compilers.

• Just In Time (JIT) compilation tries to increase
speed.

Primitives Vs. Objects

15

Java Primitive Types

• Pre-defined by Java
Programming Language and
named by its reserved keyword.

• This means that you don’t use
the new operator to create a
primitive variable.

• Declaring primitive variables:
float initVal;
int retVal, 2;
double gamma = 1.2;
boolean valueOk = false;

• Homework: Find the range of
values for all these primitive
types.

Type Size

byte 1 byte

short 2 bytes

int 4 bytes

long 8 bytes

float 4 bytes

double 8 bytes

char 2 bytes

boolean 1 bit

Primitives Vs. Objects

Everything in Java is an “Object”, as every class by default inherits from class
“Object” , except a few primitive data types, which are there for efficiency
reasons.

Primitive Data Types
8 Primitive Data types of java

boolean, byte  1 byte
char, short  2 bytes
int, float  4 bytes
long, double  8 bytes

Primitive data types are generally used for local variables, parameters and
instance variables (properties of an object)

Primitive datatypes are located on the stack and we can only access their
value, while objects are located on heap and we have a reference to these
objects

Also primitive data types are always passed by value while
objects are always passed by reference in java. There is no C++ like
methods

void someMethod(int &a, int & b) // not available in java 17

Stack vs. Heap

public static void main(String args[])

{

int num= 5;

Student st = new Student();

st.name = ali;

}

num

st

5

0F59

0F59

name ali

Stack Heap

18

Primitives (cont)

For all built-in primitive data types java uses lowercase. E.g int , float etc

Primitives can be stored in arrays

You cannot get a reference to a primitive //as in c++ call by reference
To do that you need an Object or a Wrapper class

19

Wrapper Classes

Wrapper classes provide a way to use primitive data types (int, boolean,
etc..) as objects.

20

Wrapper Classes

Each primitive data type has a
corresponding(اسی سے متعلق) object
(wrapper class)

These Wrapper classes provides
additional functionality
(conversion, size checking etc),
which a primitive data type can
not provide

Primitive Corresponding

Data Type Object Class

 byte Byte

 short Short

 int Integer

 long Long

 float Float

 double Double

 char Character

 boolean Boolean

21

Wrapper Use

You can create an object of Wrapper class using a String
or a primitive data type

Integer num = new Integer(4); or
Integer num = new Integer(“4”);
Num is an object over here not a primitive data type

You can get a primitive data type from a Wrapper using
the corresponding value function

int primNum = num.intValue();

22

Stack vs. Heap

public static void main(String args[])

{

int num= 5;

Integer numObj = new Integer (10);

}

num

numObj

5

04E2

Stack Heap

04E2

10

23

Wrapper Uses

Defines useful constants for each data type
For example,

Integer.MAX_VALUE

Convert between data types
Use parseXxx method to convert a String to the corresponding
primitive data type

String value = “532";
int d = Integer.parseInt(value);

String value = "3.14e6";
double d = Double.parseDouble(value);

24

Wrappers: Converting Strings

Data Type Convert String using either …

 byte Byte.parseByte(string)

 new Byte(string).byteValue()

 short Short.parseShort(string)

 new Short(string).shortValue()

 int Integer.parseInteger(string)

 new Integer(string).intValue()

 long Long.parseLong(string)

 new Long(string).longValue()

 float Float.parseFloat(string)

 new Float(string).floatValue()

 double Double.parseDouble(string)

 new Double(string).doubleValue()

(string)

25

Input / Output

26

ROUGH

SN Modifier and Type Field Description

1 static
PrintStrean

err The "standard"
error output
stream.

2 static
InputStream

in The "standard"
input stream.

3 static
PrintStream

out The "standard"
output stream.

27

In Java System Class, we have 3 different types of field and 28 different types of method.
Java System Class consists of following fields:-

Console based Output
System.out

System class
Out represents the screen

System.out.println()
Prints the string followed by an end of line
Forces a flush

System.out.print()
Does not print the end of line
Does not force a flush

System.out.flush()
Force a flush

28

Input / Output

/* This program will takes the input (number) through GUI and prints its square on
the console as well as on the GUI. */

public class InputOutputTest {
public static void main(String[] args) {

Scanner myObj = new Scanner(System.in); // Create a Scanner object
System.out.println("Enter username");

String userName = myObj.nextLine(); // Read user input
System.out.println("Username is: " + userName); // Output user input

}
}

29

Rough…..in case input is not
working

30

Basic Mathematical Operators

• * / % + - are the mathematical operators

• * / % have a higher precedence than + or -

double val = a + b % d – c * d / b;

• Is the same as:
Double val = (a + (b % d)) –

((c * d) / b);

Assignment Operators

• = Assignment operator

• When a calculation involves one variable on both
sides we can use an assignment operator
+= -= *= /= %=

• For example if we wish to increase the variable
num by 10 the full calculation is
num = num + 10;

• As only num is being used we can apply the +=
assignment operator
num += 10;

Unary Operators
• If an int variable is to be increased by 1, then we can

apply the pre/post unary incremental operator
– ++num or num++

• If an int variable is to be decreased by 1, then we can
apply the pre/post unary decremental operator
– --num or num--

• We use these operators as part of an statement
– Pre operator increments/decrements at start of statement
– Post operator increments/decrements at end of statement

16

Statements & Blocks

• A simple statement is a command terminated by a
semi-colon:

x = 2;

• A block is a compound statement enclosed in curly
brackets:

{

x = 2; y = 3;

}

• Blocks may contain other blocks

Methods

• A method is a standalone block of code, which
– Is only run when invoked (by its name)
– Designed to achieve a set task
– May accept data when being invoked, via

parameter passing
– May or may not return a result, i.e. return type

• So far we have only written code in the main
method
– But now we will write code in separate methods

18

Method Format and Examples

• Format
[modifier] [static]

//method code
}

returnType methodName(parameters){

• No return type example, (no body and no parameters)

private void emptyMethod(){

}

• Return type example (body, parameter and return line)

private static int getPerimeter(int length){

return 4 * length;

}

19

Using Methods
• A method can be invoked by any code within the same

class
– However the main method is always the starting point for the

whole program
– We will often invoke methods from main

– In which case the methods should be marked static

• To invoke a method we simply call the name of the
method and supply any needed arguments
emptyMethod();

• If a method returns a value then we can assign the
method call to a variable:
perimeter = getPerimeter(length);

20

Control Flow Statements

• Normally control flows from top to bottom in a
method. Control flow statements break up the
flow of execution by employing decision making,
looping, and branching, enabling your program to
conditionally execute particular blocks of code.

• Decision-making statements (if-then, if-then-else,
switch)

• Looping statements (for, while, do-while)

• Branching statements (break, continue, return)

If – The Conditional Statement

• The if statement evaluates an expression and if that
evaluation is true then the specified action is taken

if (x < 5) x = 10;

• If the value of x is less than 5, make x equal to 10

• It could have been written:
if (x < 5)

x = 10;

• Or, alternatively:
if (x < 5) { x = 10; }

Relational Operators

==

!=

>=

<=

<

Equal

Not equal

Greater than or equal

Less than or equal

> Greater than

Less than

If… else

• The if … else statement evaluates an expression and performs
one action if that evaluation is true or a different action if it is
false.

if (x != oldx) {

System.out.print(“x was changed”);

}

else {

System.out.print(“x is unchanged”);

}

Nested if … else

if (CONDITION1) {

if (CONDITION2) {

System.out.println(“Condition1 and

Condition2 both are true”);

}

else {

System.out.println(“Condition1 is true

and Condition2 is not”);

}

}

else

{

System.out.println(“Condition1 is not
true”);

}

else if

• Useful for choosing between alternatives:
if (CONDITION1) {

// execute code block #1

}

else if (CONDITION2) {

// execute code block #2

}

else {

// if all previous tests have failed,

execute code block #3

}

The switch Statement
switch (n) {

case 1:

// execute code block #1

break;

case 2:

// execute code block #2

break;

default:

// if all previous tests fail then

//execute code block #4

break;

}

The for loop

// this code body will execute n times

// from 0 to n-1

• Loop n times
for (i = 0; i < n; n++) {

}

• Nested for:

for (j = 0; j < 10; j++) {

for (i = 0; i < 20; i++){

// this code body will execute 200 times

}

}

while loops

n=0

while(n<10) {

System.out.print(“ The value of n is” + n);

n++;

}

What is the minimum number of times the loop is executed?

What is the maximum number of times?

do {… } while loops

n=0

do {

System.out.print(“ The value of n is” + n);

n++;

} while(n<10);

What is the minimum number of times the loop is executed?

What is the maximum number of times?

break

• A break statement causes an exit from the
innermost containing while, do, for or switch
statement.
for (int i = 0; i < n, i++) {

if (CONDITION1) {

// statements here

break;

}

} // program jumps here after break

return

• Exits a method with or without a value.

• Discussed earlier in Methods

Further Reading

• Oracle’s Java Tutorial

– http://docs.oracle.com/javase/tutorial/java/nutsa
ndbolts/index.html

33

http://docs.oracle.com/javase/tutorial/java/nutsa

