
1

Link to download anachonda for python:

https://repo.anaconda.com/archive/Anaconda3-2023.07-2-Windows-x86_64.exe

Python

Python is a powerful general-purpose programming language. It is used in web

development, data science, creating software, and so on. Fortunately for beginners,

Python has simple easy-to-use syntax. This makes Python an excellent language to learn

to program for beginners.

Why Learn Python?

 Python is easy to learn. Its syntax is easy and code is very readable.

 Python has a lot of applications. It's used for developing web applications, data science,

rapid application development, and so on.

 Python allows you to write programs in fewer lines of code than most of the

programming languages.

 The popularity of Python is growing rapidly. Now it's one of the most popular

programming languages.

Python is a cross-platform programming language, which means that it can run on

multiple platforms like Windows, macOS, Linux. It is free and open-source. Even though

most of today's Linux and Mac have Python pre-installed in it, the version might be out-

of-date. So, it is always a good idea to install the most current version.

2

///

print("Hello, World!")

///////////////////////////////////////

Here check : in if statement end;;;;;

if 5 > 2:

 print("Five is greater than two!")

///

You have to use the same number of spaces in the same block of code,
otherwise Python will give you an error:

if 5 > 2:
 print("Five is greater than two!")

 print("Five is greater than two!")#this line will show error

but this will not;;;;;;;;;;;;

if 5 > 2:

 print("Five is greater than two!")

if 5 > 2:

 print("Five is greater than two!")

//

Python Variables
x = 5

y = "Hello, World!"

//

Comments

Python has commenting capability for the purpose of in-code documentation.

Comments start with a #, and Python will render the rest of the line as a

comment:

3

Example

Comments in Python:

#This is a comment.

print("Hello, World!")

print("Hello, World!") #This is a comment

Comments can be used to explain Python code.

Comments can be used to make the code more readable.

Comments can be used to prevent execution when testing code.

Multi Line Comments

Python does not really have a syntax for multi line comments.

To add a multiline comment you could insert a # for each line:

Example

#This is a comment
#written in

#more than just one line
print("Hello, World!")

(triple quotes) in your code, and place your comment inside it:

"""

This is a comment

written in

more than just one line

"""

print("Hello, World!")

///

4

Creating Variables

Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

Example

x = 5

y = "John"
print(x)

print(y)

Variables do not need to be declared with any particular type, and can
even change type after they have been set.

Example

x = 4 # x is of type int

x = "Sally" # x is now of type str

print(x)

//

Casting

If you want to specify the data type of a variable, this can be done with casting.

Example

x = str(3) # x will be '3'
y = int(3) # y will be 3

z = float(3) # z will be 3.0

///

Get the Type

You can get the data type of a variable with the type() function.

5

Example

x = 5

y = "John"

print(type(x))

print(type(y))

//

Single or Double Quotes?

String variables can be declared either by using single or double quotes:

Example

x = "John"

is the same as
x = 'John'

//

Case-Sensitive

Variable names are case-sensitive.

Example

This will create two variables:

a = 4

A = "Sally"

#A will not overwrite a

//

Python - Variable Names

Variable Names
A variable can have a short name (like x and y) or a more descriptive name

(age, carname, total_volume). Rules for Python variables:

6

 A variable name must start with a letter or the underscore character
 A variable name cannot start with a number
 A variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _)
 Variable names are case-sensitive (age, Age and AGE are three different

variables)

Example

Legal variable names:

myvar = "John"

my_var = "John"

_my_var = "John"

myVar = "John"

MYVAR = "John"

myvar2 = "John"

Try it Yourself »

Example

Illegal variable names:

2myvar = "John"

my-var = "John"

my var = "John"

Try it Yourself »

Remember that variable names are case-sensitive

Multi Words Variable Names

Variable names with more than one word can be difficult to read.

There are several techniques you can use to make them more readable:

Camel Case

Each word, except the first, starts with a capital letter:

https://www.w3schools.com/python/trypython.asp?filename=demo_variable_names_legal
https://www.w3schools.com/python/trypython.asp?filename=demo_variable_names_error

7

myVariableName = "John"

Pascal Case

Each word starts with a capital letter:

MyVariableName = "John"

Snake Case

Each word is separated by an underscore character:

my_variable_name = "John"

//

Python Variables - Assign

Multiple Values

Many Values to Multiple Variables

Python allows you to assign values to multiple variables in one line:

Example

x, y, z = "Orange", "Banana", "Cherry"

print(x)

print(y)

print(z)

8

Try it Yourself »

Note: Make sure the number of variables matches the number of values, or
else you will get an error.

One Value to Multiple Variables

And you can assign the same value to multiple variables in one line:

Example

x = y = z = "Orange"

print(x)
print(y)

print(z)

Try it Yourself »

Unpack a Collection

If you have a collection of values in a list, tuple etc. Python allows you to
extract the values into variables. This is called unpacking.

Example

Unpack a list:

fruits = ["apple", "banana", "cherry"]
x, y, z = fruits

print(x)

print(y)

print(z)

///

https://www.w3schools.com/python/trypython.asp?filename=demo_variables8
https://www.w3schools.com/python/trypython.asp?filename=demo_variables6

9

Python - Output Variables

Output Variables

The Python print statement is often used to output variables.

To combine both text and a variable, Python uses the + character:

Example

x = "awesome"

print("Python is " + x)

Try it Yourself »

You can also use the + character to add a variable to another variable:

Example

x = "Python is "

y = "awesome"
z = x + y

print(z)

Try it Yourself »

For numbers, the + character works as a mathematical operator:

Example

x = 5

y = 10

print(x + y)

Try it Yourself »

If you try to combine a string and a number, Python will give you an error:

https://www.w3schools.com/python/trypython.asp?filename=demo_variables3
https://www.w3schools.com/python/trypython.asp?filename=demo_variables4
https://www.w3schools.com/python/trypython.asp?filename=demo_variables5

10

Example

x = 5

y = "John"

print(x + y)

//

Python - Global Variables

Global Variables

Variables that are created outside of a function (as in all of the examples above)
are known as global variables.

Global variables can be used by everyone, both inside of functions and outside.

Example

Create a variable outside of a function, and use it inside the function

x = "awesome"

def myfunc():

 print("Python is " + x)

myfunc()

Try it Yourself »

If you create a variable with the same name inside a function, this variable will
be local, and can only be used inside the function. The global variable with the
same name will remain as it was, global and with the original value.

Example

Create a variable inside a function, with the same name as the global variable

x = "awesome"

https://www.w3schools.com/python/trypython.asp?filename=demo_variables_global

11

def myfunc():

 x = "fantastic"
 print("Python is " + x)

myfunc()

print("Python is " + x)

The global Keyword

Normally, when you create a variable inside a function, that variable is local,
and can only be used inside that function.

To create a global variable inside a function, you can use the global keyword.

Example

If you use the global keyword, the variable belongs to the global scope:

def myfunc():

 global x

 x = "fantastic"

myfunc()

print("Python is " + x)

Also, use the global keyword if you want to change a global variable inside a

function.

Example

To change the value of a global variable inside a function, refer to the variable
by using the global keyword:

x = "awesome"

12

def myfunc():

 global x
 x = "fantastic"

myfunc()

print("Python is " + x)

///

Python Data Types

Built-in Data Types

In programming, data type is an important concept.

Variables can store data of different types, and different types can do different
things.

Python has the following data types built-in by default, in these categories:

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

Getting the Data Type

You can get the data type of any object by using the type() function:

13

Example

Print the data type of the variable x:

x = 5
print(type(x))

Try it Yourself »

Setting the Data Type

In Python, the data type is set when you assign a value to a variable:

Example Data Type

x = "Hello World" str

x = 20 int

x = 20.5 float

x = 1j complex

x = ["apple", "banana", "cherry"] list

x = ("apple", "banana", "cherry") tuple

https://www.w3schools.com/python/trypython.asp?filename=demo_type
https://www.w3schools.com/python/trypython.asp?filename=demo_type_str
https://www.w3schools.com/python/trypython.asp?filename=demo_type_int
https://www.w3schools.com/python/trypython.asp?filename=demo_type_float
https://www.w3schools.com/python/trypython.asp?filename=demo_type_complex
https://www.w3schools.com/python/trypython.asp?filename=demo_type_list
https://www.w3schools.com/python/trypython.asp?filename=demo_type_tuple

14

x = range(6) range

x = {"name" : "John", "age" : 36} dict

x = {"apple", "banana", "cherry"} set

x = True bool

The list is dynamic, whereas the tuple has static
characteristics. This means that lists can be modified
whereas tuples cannot be modified, the tuple is faster than
the list because of static in nature. Lists are denoted by
the square brackets but tuples are denoted as
parenthesis.

https://www.w3schools.com/python/trypython.asp?filename=demo_type_range
https://www.w3schools.com/python/trypython.asp?filename=demo_type_dict
https://www.w3schools.com/python/trypython.asp?filename=demo_type_set
https://www.w3schools.com/python/trypython.asp?filename=demo_type_frozenset
https://www.w3schools.com/python/trypython.asp?filename=demo_type_bool
https://www.w3schools.com/python/trypython.asp?filename=demo_type_bytes
https://www.w3schools.com/python/trypython.asp?filename=demo_type_bytearray
https://www.w3schools.com/python/trypython.asp?filename=demo_type_memoryview

15

my_list = [1, 2, 3]

my_list.append(14)

my_list.remove(2)

print(my_list) # Output: [1, 2, 3, 14]

my_list = [1, 2, 3]

my_list.insert(1, 4) # Insert 4 at index 1

print(my_list) # Output: [1, 4, 2, 3]

my_list = [1, 2, 3]

my_list.extend([14, 15])

print(my_list) # Output: [1, 2, 3, 14, 15]

my_list = [1, 2, 3]

my_list += [14, 15]

print(my_list) # Output: [1, 2, 3, 14, 15]

16

Dictionary

my_dict = {'name': 'Alice', 'age': 30}

my_dict['city'] = 'New York' # Adding a new key-value pair

print(my_dict)

Output: {'name': 'Alice', 'age': 30, 'city': 'New York'}

my_dict = {'name': 'Alice', 'age': 30}

my_dict.update({'city': 'New York', 'country': 'USA'}) #
Adding multiple key-value pairs

print(my_dict)

Output: {'name': 'Alice', 'age': 30, 'city': 'New York',
'country': 'USA'}

17

my_dict = {'name': 'Alice', 'age': 30}

my_dict.update({'age': 31}) # Updating the 'age' key

my_dict.__delitem__("name")

print(my_dict)

Output: {'age': 31}

Set
my_set = {1, 2, 3}

my_set.add(14) # Adding a single value

print(my_set) # Output: {1, 2, 3, 14}

my_set = {1, 2, 3}

my_set.update([13,14, 15]) # Adding multiple values

my_set.discard(3) # delete a number

print(my_set) # Output: {1, 2, 13, 14, 15}

18

Lists

are mutable.

Tuples

are immutable.

Sets are mutable and

have no duplicate

elements.

Dictionaries are mutable and

keys do not allow duplicates.

Lists are

declared with

square braces.

Tuples are enclosed

within parenthesis.

Sets are represented in

curly brackets.

Dictionaries are enclosed in

curly brackets in the form of

key-value pairs.

Python User Input

User Input

Python allows for user input.

Lists Tuples Sets Dictionaries

A list is a

collection

of ordered data.

A tuple is

an ordered collection

of data.

A set is

an unordered collection.

A dictionary is

an unordered collection of data

that stores data in key-value

pairs.

19

That means we are able to ask the user for input.

The method is a bit different in Python 3.6 than Python 2.7.

Python 3.6 uses the input() method.

Python 2.7 uses the raw_input() method.

The following example asks for the username, and when you entered the
username, it gets printed on the screen:

Python 3.6
username = input("Enter username:")

print("Username is: " + username)

Run Example »

Python 2.7

username = raw_input("Enter username:")

print("Username is: " + username)

Run Example »

Python stops executing when it comes to the input() function, and continues

when the user has given some input.

Setting the Specific Data Type

If you want to specify the data type, you can use the following constructor

functions:

https://www.w3schools.com/python/showpython.asp?filename=demo_user_input3
https://www.w3schools.com/python/showpython.asp?filename=demo_user_input2

20

Example Data Type

x = str("Hello World") str

x = int(20) int

x = float(20.5) float

x = complex(1j) complex

x = list(("apple", "banana", "cherry")) list

x = tuple(("apple", "banana", "cherry")) tuple

x = range(6) range

x = dict(name="John", age=36) dict

x = set(("apple", "banana", "cherry")) set

https://www.w3schools.com/python/trypython.asp?filename=demo_type_str2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_int2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_float2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_complex2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_list2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_tuple2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_range2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_dict2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_set2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_frozenset2

21

x = bool(5) bool

Test Yourself With Exercises

Exercise:

The following code example would print the data type of x, what data type would that
be?

x = 5

print(type(x))

///

Python Numbers

Python Numbers

There are three numeric types in Python:

https://www.w3schools.com/python/trypython.asp?filename=demo_type_bool2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_bytes2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_bytearray2
https://www.w3schools.com/python/trypython.asp?filename=demo_type_memoryview2

22

 int
 float
 complex

Variables of numeric types are created when you assign a value to them:

Example

x = 1 # int
y = 2.8 # float
z = 1j # complex

To verify the type of any object in Python, use the type() function:

Example

print(type(x))
print(type(y))
print(type(z))

Try it Yourself »

Int

Int, or integer, is a whole number, positive or negative, without decimals, of
unlimited length.

Example

Integers:

x = 1
y = 35656222554887711
z = -3255522

print(type(x))
print(type(y))
print(type(z))

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_numbers
https://www.w3schools.com/python/trypython.asp?filename=demo_numbers_int

23

Float

Float, or "floating point number" is a number, positive or negative, containing
one or more decimals.

Example

Floats:

x = 1.10
y = 1.0
z = -35.59

print(type(x))
print(type(y))
print(type(z))

Try it Yourself »

Complex

Complex numbers are written with a "j" as the imaginary part:

Example

Complex:

x = 3+5j
y = 5j
z = -5j

print(type(x))
print(type(y))
print(type(z))

Try it Yourself »

Type Conversion

https://www.w3schools.com/python/trypython.asp?filename=demo_numbers_float
https://www.w3schools.com/python/trypython.asp?filename=demo_numbers_complex

24

You can convert from one type to another with the int(), float(),

and complex() methods:

Example

Convert from one type to another:

x = 1 # int
y = 2.8 # float
z = 1j # complex

#convert from int to float:
a = float(x)

#convert from float to int:
b = int(y)

#convert from int to complex:
c = complex(x)

print(a)
print(b)
print(c)

print(type(a))
print(type(b))
print(type(c))

Try it Yourself »

Note: You cannot convert complex numbers into another number type.

Random Number

Python does not have a random() function to make a random number, but Python

has a built-in module called random that can be used to make random numbers:

Example

Import the random module, and display a random number between 1 and 9:

import random
print(random.randrange(1,10))

https://www.w3schools.com/python/trypython.asp?filename=demo_numbers_convert

25

est Yourself With Exercises

Exercise:

Insert the correct syntax to convert x into a floating point number.

x = 5

x = (x)

//

Python Casting

Specify a Variable Type

There may be times when you want to specify a type on to a variable. This can
be done with casting. Python is an object-orientated language, and as such it
uses classes to define data types, including its primitive types.

Casting in python is therefore done using constructor functions:

 int() - constructs an integer number from an integer literal, a float literal

(by removing all decimals), or a string literal (providing the string
represents a whole number)

 float() - constructs a float number from an integer literal, a float literal

or a string literal (providing the string represents a float or an integer)
 str() - constructs a string from a wide variety of data types, including

strings, integer literals and float literals

Example

Integers:

x = int(1) # x will be 1
y = int(2.8) # y will be 2

26

z = int("3") # z will be 3

Try it Yourself »

Example

Floats:

x = float(1) # x will be 1.0
y = float(2.8) # y will be 2.8
z = float("3") # z will be 3.0
w = float("4.2") # w will be 4.2

Try it Yourself »

Example

Strings:

x = str("s1") # x will be 's1'
y = str(2) # y will be '2'
z = str(3.0) # z will be '3.0'

Try it Yourself »

///

Python Strings are not the

part of course work

///

Python Iterative Statements

Iteration statements or loop statements allow us to execute a

block of statements as long as the condition is true.

https://www.w3schools.com/python/trypython.asp?filename=demo_casting_int
https://www.w3schools.com/python/trypython.asp?filename=demo_float
https://www.w3schools.com/python/trypython.asp?filename=demo_string

27

Loops statements are used when we need to run same code

again and again, each time with a different value.

Type of Iteration Statements In Python 3
In Python Iteration (Loops) statements are of three types :-

1. While Loop

2. For Loop

3. Nested For Loops

Python For Loops

A for loop is used for iterating over a sequence (that is either a list, a tuple, a

dictionary, a set, or a string).

This is less like the for keyword in other programming languages, and works

more like an iterator method as found in other object-orientated programming
languages.

With the for loop we can execute a set of statements, once for each item in a

list, tuple, set etc.

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

Try it Yourself »

The for loop does not require an indexing variable to set beforehand.

http://www.lastnightstudy.com/Show?id=84/Python-3-Iteration-Statements#Nested%20For%20Loops%20In%20Python
https://www.w3schools.com/python/trypython.asp?filename=demo_for

28

Looping Through a String

Even strings are iterable objects, they contain a sequence of characters:

Example

Loop through the letters in the word "banana":

for x in "banana":

 print(x)

Try it Yourself »

The break Statement

With the break statement we can stop the loop before it has looped through all

the items:

Example

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

 if x == "banana":

 break

Try it Yourself »

Example

Exit the loop when x is "banana", but this time the break comes before the

print:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

https://www.w3schools.com/python/trypython.asp?filename=demo_for_string
https://www.w3schools.com/python/trypython.asp?filename=demo_for_break

29

 break

 print(x)

The continue Statement

With the continue statement we can stop the current iteration of the loop, and

continue with the next:

Example

Do not print banana:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 continue
 print(x)

Try it Yourself »

The range() Function
To loop through a set of code a specified number of times, we can use

the range() function,

The range() function returns a sequence of numbers, starting from 0 by

default, and increments by 1 (by default), and ends at a specified number.

Example

Using the range() function:

for x in range(6):

 print(x)

Try it Yourself »

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

https://www.w3schools.com/python/trypython.asp?filename=demo_for_continue
https://www.w3schools.com/python/trypython.asp?filename=demo_for_range

30

The range() function defaults to 0 as a starting value, however it is possible to

specify the starting value by adding a parameter: range(2, 6), which means

values from 2 to 6 (but not including 6):

Example

Using the start parameter:

for x in range(2, 6):

 print(x)

Try it Yourself »

The range() function defaults to increment the sequence by 1, however it is

possible to specify the increment value by adding a third parameter: range(2,
30, 3):

Example

Increment the sequence with 3 (default is 1):

for x in range(2, 30, 3):

 print(x)

Try it Yourself »

Else in For Loop

The else keyword in a for loop specifies a block of code to be executed when

the loop is finished:

Example

Print all numbers from 0 to 5, and print a message when the loop has ended:

for x in range(6):

 print(x)

else:

 print("Finally finished!")

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_for_range2
https://www.w3schools.com/python/trypython.asp?filename=demo_for_range3
https://www.w3schools.com/python/trypython.asp?filename=demo_for_else

31

Note: The else block will NOT be executed if the loop is stopped by

a break statement.

Example

Break the loop when x is 3, and see what happens with the else block:

for x in range(6):
 if x == 3: break

 print(x)
else:

 print("Finally finished!")

Try it Yourself »

Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer loop":

Example

Print each adjective for every fruit:

adj = ["red", "big", "tasty"]
fruits = ["apple", "banana", "cherry"]

for x in adj:

 for y in fruits:

 print(x, y)

Try it Yourself »

The pass Statement

for loops cannot be empty, but if you for some reason have a for loop with no

content, put in the pass statement to avoid getting an error.

https://www.w3schools.com/python/trypython.asp?filename=demo_for_else_break
https://www.w3schools.com/python/trypython.asp?filename=demo_for_nested

32

Example

for x in [0, 1, 2]:

 pass

Try it Yourself »

Python While Loops

The while Loop

With the while loop we can execute a set of statements as long as a condition is

true.

Example

Print i as long as i is less than 6:

i = 1

while i < 6:
 print(i)

 i += 1

Try it Yourself »

Note: remember to increment i, or else the loop will continue forever.

The while loop requires relevant variables to be ready, in this example we need

to define an indexing variable, i, which we set to 1.

The break Statement

With the break statement we can stop the loop even if the while condition is

true:

https://www.w3schools.com/python/trypython.asp?filename=demo_for_pass
https://www.w3schools.com/python/trypython.asp?filename=demo_while

33

Example

Exit the loop when i is 3:

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

Try it Yourself »

The continue Statement

With the continue statement we can stop the current iteration, and continue

with the next:

Example

Continue to the next iteration if i is 3:

i = 0
while i < 6:

 i += 1

 if i == 3:

 continue

 print(i)

Try it Yourself »

The else Statement

With the else statement we can run a block of code once when the condition no

longer is true:

https://www.w3schools.com/python/trypython.asp?filename=demo_while_break
https://www.w3schools.com/python/trypython.asp?filename=demo_while_continue

34

Example

Print a message once the condition is false:

i = 1

while i < 6:

 print(i)

 i += 1

else:

 print("i is no longer less than 6")

Try it Yourself »

Test Yourself With Exercises

Exercise:

Print i as long as i is less than 6.

i = 1

 i < 6

 print(i)

 i += 1

Python Functions

A function is a block of code which only runs when it is called.

You can pass data, known as parameters, into a function.

A function can return data as a result.

https://www.w3schools.com/python/trypython.asp?filename=demo_while_else

35

Creating a Function

In Python a function is defined using the def keyword:

Example
def my_function():

 print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():

 print("Hello from a function")

my_function()

Try it Yourself »

Arguments

Information can be passed into functions as arguments.

Arguments are specified after the function name, inside the parentheses. You

can add as many arguments as you want, just separate them with a comma.

The following example has a function with one argument (fname). When the
function is called, we pass along a first name, which is used inside the function
to print the full name:

Example

def my_function(fname):

 print(fname + " Refsnes")

https://www.w3schools.com/python/trypython.asp?filename=demo_function

36

my_function("Emil")
my_function("Tobias")

my_function("Linus")

Try it Yourself »

Arguments are often shortened to args in Python documentations.

Parameters or Arguments?

The terms parameter and argument can be used for the same thing:
information that are passed into a function.

From a function's perspective:

A parameter is the variable listed inside the parentheses in the function
definition.

An argument is the value that is sent to the function when it is called.

Number of Arguments

By default, a function must be called with the correct number of arguments.
Meaning that if your function expects 2 arguments, you have to call the function
with 2 arguments, not more, and not less.

Example

This function expects 2 arguments, and gets 2 arguments:

def my_function(fname, lname):
 print(fname + " " + lname)

my_function("Emil", "Refsnes")

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_function_param
https://www.w3schools.com/python/trypython.asp?filename=demo_function_args_n

37

If you try to call the function with 1 or 3 arguments, you will get an error:

Example

This function expects 2 arguments, but gets only 1:

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Emil")

Try it Yourself »

Arbitrary Arguments, *args

If you do not know how many arguments that will be passed into your function,
add a * before the parameter name in the function definition.

This way the function will receive a tuple of arguments, and can access the
items accordingly:

Example

If the number of arguments is unknown, add a * before the parameter name:

def my_function(*kids):
 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

Try it Yourself »

Arbitrary Arguments are often shortened to *args in Python documentations.

Keyword Arguments

You can also send arguments with the key = value syntax.

https://www.w3schools.com/python/trypython.asp?filename=demo_function_args_error
https://www.w3schools.com/python/trypython.asp?filename=demo_function_args

38

This way the order of the arguments does not matter.

Example

def my_function(child3, child2, child1):

 print("The youngest child is " + child3)

my_function(child1 = "Emil", child2 = "Tobias", child3 = "Linus")

Try it Yourself »

The phrase Keyword Arguments are often shortened to kwargs in Python
documentations.

Arbitrary Keyword Arguments, **kwargs

If you do not know how many keyword arguments that will be passed into your
function, add two asterisk: ** before the parameter name in the function

definition.

This way the function will receive a dictionary of arguments, and can access the
items accordingly:

Example

If the number of keyword arguments is unknown, add a double ** before the

parameter name:

def my_function(**kid):

 print("His last name is " + kid["lname"])

my_function(fname = "Tobias", lname = "Refsnes")

Try it Yourself »

Arbitrary Kword Arguments are often shortened to **kwargs in Python
documentations.

https://www.w3schools.com/python/trypython.asp?filename=demo_function_kwargs
https://www.w3schools.com/python/trypython.asp?filename=demo_function_kwargs_n

39

Default Parameter Value

The following example shows how to use a default parameter value.

If we call the function without argument, it uses the default value:

Example

def my_function(country = "Norway"):

 print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

Try it Yourself »

Passing a List as an Argument

You can send any data types of argument to a function (string, number, list,
dictionary etc.), and it will be treated as the same data type inside the function.

E.g. if you send a List as an argument, it will still be a List when it reaches the
function:

Example

def my_function(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_function_param2
https://www.w3schools.com/python/trypython.asp?filename=demo_function_param3

40

Return Values

To let a function return a value, use the return statement:

Example

def my_function(x):
 return 5 * x

print(my_function(3))

print(my_function(5))

print(my_function(9))

Try it Yourself »

The pass Statement

function definitions cannot be empty, but if you for some reason have

a function definition with no content, put in the pass statement to avoid getting

an error.

Example

def myfunction():

 pass

Try it Yourself »

Recursion

Python also accepts function recursion, which means a defined function can call
itself.

Recursion is a common mathematical and programming concept. It means that
a function calls itself. This has the benefit of meaning that you can loop through
data to reach a result.

https://www.w3schools.com/python/trypython.asp?filename=demo_function_return
https://www.w3schools.com/python/trypython.asp?filename=demo_function_pass

41

The developer should be very careful with recursion as it can be quite easy to
slip into writing a function which never terminates, or one that uses excess
amounts of memory or processor power. However, when written correctly

recursion can be a very efficient and mathematically-elegant approach to
programming.

In this example, tri_recursion() is a function that we have defined to call

itself ("recurse"). We use the k variable as the data, which decrements (-1)
every time we recurse. The recursion ends when the condition is not greater
than 0 (i.e. when it is 0).

To a new developer it can take some time to work out how exactly this works,
best way to find out is by testing and modifying it.

Example

Recursion Example

def tri_recursion(k):

 if(k > 0):

 result = k + tri_recursion(k - 1)

 print(result)

 else:

 result = 0

 print("my result at this point is "+str(result))

 return result

print("\n\nRecursion Example Results")

tri_recursion(6)

Try it Yourself »

Test Yourself With Exercises

https://www.w3schools.com/python/trypython.asp?filename=demo_recursion

42

Exercise:

Create a function named my_function.

:

 print("Hello from a function")

Python Operators

Python Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example
print(10 + 5)

Run example »

Python divides the operators in the following groups:

 Arithmetic operators
 Assignment operators

 Comparison operators
 Logical operators
 Identity operators
 Membership operators

 Bitwise operators

Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform common
mathematical operations:

https://www.w3schools.com/python/trypython.asp?filename=demo_oper

43

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

Python Assignment Operators

Assignment operators are used to assign values to variables:

Operator Example Same As

https://www.w3schools.com/python/trypython.asp?filename=demo_oper_add
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_sub
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_mult
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_div
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_mod
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_exp
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_floordiv

44

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass1
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass2
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass3
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass4
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass5
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass6
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass7
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass8
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass9
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass10
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass11

45

ADVERTISEMENT

Python Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass12
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_ass13
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_compare1
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_compare2
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_compare4
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_compare5
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_compare6

46

<= Less than or equal to x <= y

Python Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both statements are true x < 5 and x < 10

or Returns True if one of the statements is true x < 5 or x < 4

not Reverse the result, returns False if the result

is true

not(x < 5 and x < 10)

https://www.w3schools.com/python/trypython.asp?filename=demo_oper_compare7
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_logical1
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_logical2
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_logical3

47

Python Membership Operators

Membership operators are used to test if a sequence is presented in an object:

Operator Description Example

in Returns True if a sequence with the specified value

is present in the object

x in y

Python Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

Operator Name Description Example

& AND Sets each bit to 1 if both bits are 1 x & y

| OR Sets each bit to 1 if one of two bits is

1

x | y

https://www.w3schools.com/python/trypython.asp?filename=demo_oper_membership1
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_membership2
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_and
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_or
https://www.w3schools.com/python/trypython.asp?filename=demo_oper_xor

48

Operator Precedence

Operator precedence describes the order in which operations are performed.

Example

Parentheses has the highest precedence, meaning that expressions inside
parentheses must be evaluated first:

print((6 + 3) - (6 + 3))

Run example »

Example

Multiplication * has higher precedence than addition +, and therefor

multiplications are evaluated before additions:

print(100 + 5 * 3)

Run example »

Example

Addition + and subtraction - has the same precedence, and therefor we evaluate

the expression from left to right:

print(5 + 4 - 7 + 3)

Run example »

Test Yourself With Exercises

Exercise:

Multiply 10 with 5, and print the result.

https://www.w3schools.com/python/trypython.asp?filename=demo_precedence_parentheses
https://www.w3schools.com/python/trypython.asp?filename=demo_precedence_multiplication
https://www.w3schools.com/python/trypython.asp?filename=demo_precedence_same

49

print(10 5)

Python Math

Python has a set of built-in math functions, including an extensive math

module, that allows you to perform mathematical tasks on numbers.

Built-in Math Functions

The min() and max() functions can be used to find the lowest or highest value in

an iterable:

Example
x = min(5, 10, 25)
y = max(5, 10, 25)

print(x)

print(y)

Try it Yourself »

The abs() function returns the absolute (positive) value of the specified number:

Example

x = abs(-7.25)

print(x)

Try it Yourself »

The pow(x, y) function returns the value of x to the power of y (xy).

https://www.w3schools.com/python/trypython.asp?filename=demo_math_min_max
https://www.w3schools.com/python/trypython.asp?filename=demo_math_abs

50

Example

Return the value of 4 to the power of 3 (same as 4 * 4 * 4):

x = pow(4, 3)

print(x)

Try it Yourself »

ADVERTISEMENT

The Math Module

Python has also a built-in module called math, which extends the list of

mathematical functions.

To use it, you must import the math module:

import math

When you have imported the math module, you can start using methods and

constants of the module.

The math.sqrt() method for example, returns the square root of a number:

Example

import math

x = math.sqrt(64)

print(x)

Try it Yourself »

The math.ceil() method rounds a number upwards to its nearest integer, and

the math.floor() method rounds a number downwards to its nearest integer, and

returns the result:

https://www.w3schools.com/python/trypython.asp?filename=demo_math_pow
https://www.w3schools.com/python/trypython.asp?filename=demo_math_sqrt

51

Example

import math

x = math.ceil(1.4)

y = math.floor(1.4)

print(x) # returns 2

print(y) # returns 1

Try it Yourself »

The math.pi constant, returns the value of PI (3.14...):

Example

import math

x = math.pi

print(x)

Try it Yourself »

Python Random Module

Python has a built-in module that you can use to make random numbers.

The random module has a set of methods:

https://www.w3schools.com/python/trypython.asp?filename=demo_math_ceil_floor
https://www.w3schools.com/python/trypython.asp?filename=demo_math_pi

52

Method Description

randrange() Returns a random number between the given range

randint() Returns a random number between the given range

choice() Returns a random element from the given sequence

random() Returns a random float number between 0 and 1

import random

Generate a random integer between 1 and 10 (inclusive)

random_number = random.randint(1, 10)

print("Random Number:", random_number)

Create a list of items

my_list = ["apple", "banana", "cherry", "date", "elderberry"]

Select a random item from the list

random_item = random.choice(my_list)

print("Random Item:", random_item)

https://www.w3schools.com/python/ref_random_randrange.asp
https://www.w3schools.com/python/ref_random_randint.asp
https://www.w3schools.com/python/ref_random_choice.asp
https://www.w3schools.com/python/ref_random_random.asp

53

Python Classes and Objects

Python Classes/Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Example

Create a class named MyClass, with a property named x:

class MyClass:

 x = 5

Try it Yourself »

Create Object

Now we can use the class named MyClass to create objects:

Example

Create an object named p1, and print the value of x:

p1 = MyClass()

print(p1.x)

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_class1
https://www.w3schools.com/python/trypython.asp?filename=demo_class2

54

The __init__() Function

The examples above are classes and objects in their simplest form, and are not
really useful in real life applications.

To understand the meaning of classes we have to understand the built-in

__init__() function.

All classes have a function called __init__(), which is always executed
when the class is being initiated.

Use the __init__() function to assign values to object properties, or other

operations that are necessary to do when the object is being created:

Example

Create a class named Person, use the __init__() function to assign values for
name and age:

class Person:
 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

Try it Yourself »

Note: The __init__() function is called automatically every time the class is

being used to create a new object.

https://www.w3schools.com/python/trypython.asp?filename=demo_class3

55

The __str__() Function

The __str__() function controls what should be returned when the class object
is represented as a string.

If the __str__() function is not set, the string representation of the object is

returned:

Example

The string representation of an object WITHOUT the __str__() function:

class Person:

 def __init__(self, name, age):

 self.name = name
 self.age = age

p1 = Person("John", 36)

print(p1)

Try it Yourself »

Example

The string representation of an object WITH the __str__() function:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def __str__(self):

 return f"{self.name}({self.age})"

p1 = Person("John", 36)

print(p1)

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_class_str1
https://www.w3schools.com/python/trypython.asp?filename=demo_class_str2

56

Object Methods

Objects can also contain methods. Methods in objects are functions that belong
to the object.

Let us create a method in the Person class:

Example

Insert a function that prints a greeting, and execute it on the p1 object:

class Person:
 def __init__(self, name, age):

 self.name = name
 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

p1 = Person("John", 36)

p1.myfunc()

Try it Yourself »

Note: The self parameter is a reference to the current instance of the class,

and is used to access variables that belong to the class.

The self Parameter

The self parameter is a reference to the current instance of the class, and is

used to access variables that belongs to the class.

It does not have to be named self , you can call it whatever you like, but it has

to be the first parameter of any function in the class:

Example

Use the words mysillyobject and abc instead of self:

https://www.w3schools.com/python/trypython.asp?filename=demo_class4

57

class Person:

 def __init__(mysillyobject, name, age):
 mysillyobject.name = name

 mysillyobject.age = age

 def myfunc(abc):
 print("Hello my name is " + abc.name)

p1 = Person("John", 36)

p1.myfunc()

Try it Yourself »

Modify Object Properties

You can modify properties on objects like this:

Example

Set the age of p1 to 40:

p1.age = 40

Try it Yourself »

Delete Object Properties

You can delete properties on objects by using the del keyword:

Example

Delete the age property from the p1 object:

del p1.age

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_class5
https://www.w3schools.com/python/trypython.asp?filename=demo_class6
https://www.w3schools.com/python/trypython.asp?filename=demo_class7

58

Delete Objects

You can delete objects by using the del keyword:

Example

Delete the p1 object:

del p1

Try it Yourself »

The pass Statement

class definitions cannot be empty, but if you for some reason have

a class definition with no content, put in the pass statement to avoid getting an

error.

Example

class Person:

 pass

Try it Yourself »

Test Yourself With Exercises

Exercise:

Create a class named MyClass:

 MyClass:

 x = 5

https://www.w3schools.com/python/trypython.asp?filename=demo_class8
https://www.w3schools.com/python/trypython.asp?filename=demo_class_pass

59

Python Inheritance

Python Inheritance

Inheritance allows us to define a class that inherits all the methods and
properties from another class.

Parent class is the class being inherited from, also called base class.

Child class is the class that inherits from another class, also called derived

class.

Create a Parent Class

Any class can be a parent class, so the syntax is the same as creating any other
class:

Example

Create a class named Person, with firstname and lastname properties, and

a printname method:

class Person:
 def __init__(self, fname, lname):

 self.firstname = fname
 self.lastname = lname

 def printname(self):

 print(self.firstname, self.lastname)

#Use the Person class to create an object, and then execute the printname

method:

x = Person("John", "Doe")

x.printname()

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_inheritance_parent

60

Create a Child Class

To create a class that inherits the functionality from another class, send the
parent class as a parameter when creating the child class:

Example

Create a class named Student, which will inherit the properties and methods

from the Person class:

class Student(Person):

 pass

Note: Use the pass keyword when you do not want to add any other properties

or methods to the class.

Now the Student class has the same properties and methods as the Person
class.

Example

Use the Student class to create an object, and then execute

the printname method:

x = Student("Mike", "Olsen")

x.printname()

Try it Yourself »

Add the __init__() Function

So far we have created a child class that inherits the properties and methods
from its parent.

We want to add the __init__() function to the child class (instead of

the pass keyword).

https://www.w3schools.com/python/trypython.asp?filename=demo_inheritance_child

61

Note: The __init__() function is called automatically every time the class is

being used to create a new object.

Example

Add the __init__() function to the Student class:

class Student(Person):

 def __init__(self, fname, lname):

 #add properties etc.

When you add the __init__() function, the child class will no longer inherit the

parent's __init__() function.

Note: The child's __init__() function overrides the inheritance of the

parent's __init__() function.

To keep the inheritance of the parent's __init__() function, add a call to the

parent's __init__() function:

Example

class Student(Person):

 def __init__(self, fname, lname):

 Person.__init__(self, fname, lname)

Try it Yourself »

Now we have successfully added the __init__() function, and kept the
inheritance of the parent class, and we are ready to add functionality in
the __init__() function.

Use the super() Function

Python also has a super() function that will make the child class inherit all the

methods and properties from its parent:

https://www.w3schools.com/python/trypython.asp?filename=demo_inheritance_init

62

Example

class Student(Person):

 def __init__(self, fname, lname):

 super().__init__(fname, lname)

Try it Yourself »

By using the super() function, you do not have to use the name of the parent

element, it will automatically inherit the methods and properties from its parent.

Add Properties

Example

Add a property called graduationyear to the Student class:

class Student(Person):
 def __init__(self, fname, lname):

 super().__init__(fname, lname)

 self.graduationyear = 2019

Try it Yourself »

In the example below, the year 2019 should be a variable, and passed into

the Student class when creating student objects. To do so, add another

parameter in the __init__() function:

Example

Add a year parameter, and pass the correct year when creating objects:

class Student(Person):

 def __init__(self, fname, lname, year):

 super().__init__(fname, lname)

 self.graduationyear = year

x = Student("Mike", "Olsen", 2019)

Try it Yourself »

https://www.w3schools.com/python/trypython.asp?filename=demo_inheritance_super
https://www.w3schools.com/python/trypython.asp?filename=demo_inheritance_add_prop
https://www.w3schools.com/python/trypython.asp?filename=demo_inheritance_add_prop2

63

Add Methods

Example

Add a method called welcome to the Student class:

class Student(Person):

 def __init__(self, fname, lname, year):

 super().__init__(fname, lname)

 self.graduationyear = year

 def welcome(self):

 print("Welcome", self.firstname, self.lastname, "to the class of",
self.graduationyear)

Try it Yourself »

If you add a method in the child class with the same name as a function in the
parent class, the inheritance of the parent method will be overridden.

Test Yourself With Exercises

Exercise:

What is the correct syntax to create a class named Student that will inherit
properties and methods from a class named Person?

class :

Python Polymorphism

https://www.w3schools.com/python/trypython.asp?filename=demo_inheritance_add_method

64

The word "polymorphism" means "many forms", and in programming it

refers to methods/functions/operators with the same name that can be

executed on many objects or classes.

Function Polymorphism

An example of a Python function that can be used on different objects is
the len() function.

String

For strings len() returns the number of characters:

Example
x = "Hello World!"

print(len(x))

Try it Yourself »

Tuple

For tuples len() returns the number of items in the tuple:

Example

mytuple = ("apple", "banana", "cherry")

print(len(mytuple))

Try it Yourself »

Dictionary

For dictionaries len() returns the number of key/value pairs in the dictionary:

https://www.w3schools.com/python/trypython.asp?filename=demo_poly_1
https://www.w3schools.com/python/trypython.asp?filename=demo_poly_2

65

Example

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964
}

print(len(thisdict))

Try it Yourself »

Class Polymorphism

Polymorphism is often used in Class methods, where we can have multiple
classes with the same method name.

For example, say we have three classes: Car, Boat, and Plane, and they all have a

method called move():

Example

Different classes with the same method:

class Car:

 def __init__(self, brand, model):

 self.brand = brand

 self.model = model

 def move(self):

 print("Drive!")

class Boat:

 def __init__(self, brand, model):

 self.brand = brand

 self.model = model

 def move(self):

 print("Sail!")

https://www.w3schools.com/python/trypython.asp?filename=demo_poly_3

66

class Plane:
 def __init__(self, brand, model):

 self.brand = brand
 self.model = model

 def move(self):

 print("Fly!")

car1 = Car("Ford", "Mustang") #Create a Car class

boat1 = Boat("Ibiza", "Touring 20") #Create a Boat class

plane1 = Plane("Boeing", "747") #Create a Plane class

for x in (car1, boat1, plane1):

 x.move()

Try it Yourself »

Look at the for loop at the end. Because of polymorphism we can execute the
same method for all three classes.

Inheritance Class Polymorphism

What about classes with child classes with the same name? Can we use
polymorphism there?

Yes. If we use the example above and make a parent class called Vehicle, and

make Car, Boat, Plane child classes of Vehicle, the child classes inherits

the Vehicle methods, but can override them:

Example

Create a class called Vehicle and make Car, Boat, Plane child classes of Vehicle:

class Vehicle:
 def __init__(self, brand, model):

 self.brand = brand

 self.model = model

 def move(self):

https://www.w3schools.com/python/trypython.asp?filename=demo_poly_4

67

 print("Move!")

class Car(Vehicle):

 pass

class Boat(Vehicle):
 def move(self):

 print("Sail!")

class Plane(Vehicle):

 def move(self):

 print("Fly!")

car1 = Car("Ford", "Mustang") #Create a Car object

boat1 = Boat("Ibiza", "Touring 20") #Create a Boat object

plane1 = Plane("Boeing", "747") #Create a Plane object

for x in (car1, boat1, plane1):

 print(x.brand)
 print(x.model)

 x.move()

Try it Yourself »

Child classes inherits the properties and methods from the parent class.

In the example above you can see that the Car class is empty, but it

inherits brand, model, and move() from Vehicle.

The Boat and Plane classes also inherit brand, model, and move() from Vehicle, but

they both override the move() method.

Because of polymorphism we can execute the same method for all classes.

Definition of Abstraction
Abstraction is an OOP concept that focuses only on relevant data of
an object. It hides the background details and emphasizes the
essential data points for reducing the complexity and increase
efficiency. It generally retains only information which is most relevant
for that specific process. Abstraction method mainly focusses on the
idea instead of actual functioning.

https://www.w3schools.com/python/trypython.asp?filename=demo_poly_5
https://www.guru99.com/java-data-abstraction.html

68

Definition of Encapsulation
Encapsulation is a method of making a complex system easier to
handle for end users. The user need not worry about internal details
and complexities of the system. Encapsulation is a process of
wrapping the data and the code, that operate on the data into a single
entity. You can assume it as a protective wrapper that stops random
access of code defined outside that wrapper.

S.No Abstraction Encapsulation

1.
It is the process of gaining

information.

It is a method that helps wrap up data into

a single module.

2.
The problems in this technique are

solved at the interface level.

Problems in encapsulation are solved at

the implementation level.

3.
It helps hide the unwanted

details/information.

It helps hide data using a single entity, or

using a unit with the help of method that

helps protect the information.

4.
It can be implemented using abstract

classes and interfaces.

It can be implemented using access

modifiers like public, private and

protected.

5.

The complexities of the

implementation are hidden using

interface and abstract class.

The data is hidden using methods such as

getters and setters.

6.

Abstraction can be performed using

objects that are encapsulated within a

single module.

Objects in encapsulation don't need to be

in abstraction.

Conclusion

The most significant difference between the two is that data abstraction is a method which

helps to hide the unwanted data from the user, while data encapsulation is a method which

helps to hide data using a single entity.

https://www.guru99.com/java-oops-encapsulation.html

69

///

NumPy Tutorial
NumPy is a Python library.

NumPy is used for working with arrays.

NumPy is short for "Numerical Python".

Learning by Reading

We have created 43 tutorial pages for you to learn more about NumPy.

Starting with a basic introduction and ends up with creating and plotting
random data sets, and working with NumPy functions:

70

71

NumPy Introduction

What is NumPy?

NumPy is a Python library used for working with arrays.

It also has functions for working in domain of linear algebra, fourier transform,
and matrices.

NumPy was created in 2005 by Travis Oliphant. It is an open source project and
you can use it freely.

NumPy stands for Numerical Python.

Why Use NumPy?

In Python we have lists that serve the purpose of arrays, but they are slow to
process.

NumPy aims to provide an array object that is up to 50x faster than traditional
Python lists.

The array object in NumPy is called ndarray, it provides a lot of supporting

functions that make working with ndarray very easy.

Arrays are very frequently used in data science, where speed and resources are

very important.

Data Science: is a branch of computer science where we study how to store,
use and analyze data for deriving information from it.

Why is NumPy Faster Than Lists?

72

NumPy arrays are stored at one continuous place in memory unlike lists, so
processes can access and manipulate them very efficiently.

This behavior is called locality of reference in computer science.

This is the main reason why NumPy is faster than lists. Also it is optimized to
work with latest CPU architectures.

Which Language is NumPy written in?

NumPy is a Python library and is written partially in Python, but most of the
parts that require fast computation are written in C or C++.

Where is the NumPy Codebase?

The source code for NumPy is located at this github
repository https://github.com/numpy/numpy

github: enables many people to work on the same codebase.

NumPy Getting Started

Installation of NumPy

If you have Python and PIP already installed on a system, then installation of
NumPy is very easy.

Install it using this command:

C:\Users\Your Name>pip install numpy

If this command fails, then use a python distribution that already has NumPy
installed like, Anaconda, Spyder etc.

https://github.com/numpy/numpy
https://www.w3schools.com/python/default.asp
https://www.w3schools.com/python/python_pip.asp

73

Import NumPy

Once NumPy is installed, import it in your applications by adding
the import keyword:

import numpy

Now NumPy is imported and ready to use.

Example
import numpy

arr = numpy.array([1, 2, 3, 4, 5])

print(arr)

Try it Yourself »

NumPy as np

NumPy is usually imported under the np alias.

alias: In Python alias are an alternate name for referring to the same thing.

Create an alias with the as keyword while importing:

import numpy as np

Now the NumPy package can be referred to as np instead of numpy.

Example

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_import

74

Try it Yourself »

Checking NumPy Version

The version string is stored under __version__ attribute.

Example

import numpy as np

print(np.__version__)

NumPy Creating Arrays

Create a NumPy ndarray Object

NumPy is used to work with arrays. The array object in NumPy is called ndarray.

We can create a NumPy ndarray object by using the array() function.

Example
import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

print(type(arr))

Try it Yourself »

type(): This built-in Python function tells us the type of the object passed to it.
Like in above code it shows that arr is numpy.ndarray type.

https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_as_np
https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_create_array

75

To create an ndarray, we can pass a list, tuple or any array-like object into

the array() method, and it will be converted into an ndarray:

Example

Use a tuple to create a NumPy array:

import numpy as np

arr = np.array((1, 2, 3, 4, 5))

print(arr)

Try it Yourself »

Dimensions in Arrays

A dimension in arrays is one level of array depth (nested arrays).

nested array: are arrays that have arrays as their elements.

ADVERTISEMENT

0-D Arrays

0-D arrays, or Scalars, are the elements in an array. Each value in an array is a
0-D array.

Example

Create a 0-D array with value 42

import numpy as np

arr = np.array(42)

https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_create_array2

76

print(arr)

Try it Yourself »

1-D Arrays

An array that has 0-D arrays as its elements is called uni-dimensional or 1-D
array.

These are the most common and basic arrays.

Example

Create a 1-D array containing the values 1,2,3,4,5:

import numpy as np

arr = np.array([1, 2, 3, 4, 5])

print(arr)

Try it Yourself »

2-D Arrays

An array that has 1-D arrays as its elements is called a 2-D array.

These are often used to represent matrix or 2nd order tensors.

NumPy has a whole sub module dedicated towards matrix operations
called numpy.mat

Example

Create a 2-D array containing two arrays with the values 1,2,3 and 4,5,6:

https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_create_array_0d
https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_create_array_1d

77

import numpy as np

arr = np.array([[1, 2, 3], [4, 5, 6]])

print(arr)

Try it Yourself »

Check Number of Dimensions?

NumPy Arrays provides the ndim attribute that returns an integer that tells us

how many dimensions the array have.

Example

Check how many dimensions the arrays have:

import numpy as np

a = np.array(42)

b = np.array([1, 2, 3, 4, 5])

print(a.ndim)
print(b.ndim)

Higher Dimensional Arrays

An array can have any number of dimensions.

When the array is created, you can define the number of dimensions by using
the ndmin argument.

Example

Create an array with 2 dimensions and verify that it has 5 dimensions:

https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_create_array_2d

78

import numpy as np

arr = np.array([1, 2, 3, 4], ndmin=2)

#arr = np.array([[1, 2, 3, 4]])
print(arr)

print('number of dimensions :', arr.ndim)

Try it Yourself »

With Exercises

Exercise:

Insert the correct method for creating a NumPy array.

arr = np. ([1, 2, 3, 4, 5])

NumPy Array Indexing

Access Array Elements

Array indexing is the same as accessing an array element.

You can access an array element by referring to its index number.

The indexes in NumPy arrays start with 0, meaning that the first element has
index 0, and the second has index 1 etc.

Example

Get the first element from the following array:

import numpy as np

arr = np.array([1, 2, 3, 4])

https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_ndim5

79

print(arr[0])

Try it Yourself »

Example

Get the second element from the following array.

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[1])

Try it Yourself »

Example

Get third and fourth elements from the following array and add them.

import numpy as np

arr = np.array([1, 2, 3, 4])

print(arr[2] + arr[3])

Try it Yourself »

ADVERTISEMENT

Access 2-D Arrays

To access elements from 2-D arrays we can use comma separated integers
representing the dimension and the index of the element.

Think of 2-D arrays like a table with rows and columns, where the dimension
represents the row and the index represents the column.

https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_array_index0
https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_array_index1
https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_array_index23

80

Example

Access the element on the first row, second column:

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])

print('2nd element on 1st row: ', arr[1][1]

Try it Yourself »

Example

Access the element on the 2nd row, 5th column:

import numpy as np

arr = np.array([[1,2,3,4,5], [6,7,8,9,10]])

print('5th element on 2nd row: ', arr[1][4])

Try it Yourself »

Machine Learning
Machine Learning is making the computer learn from studying data and
statistics.

Machine Learning is a step into the direction of artificial intelligence (AI).

Machine Learning is a program that analyses data and learns to predict the
outcome.

Data Set

In the mind of a computer, a data set is any collection of data. It can be
anything from an array to a complete database.

https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_array_access2d
https://www.w3schools.com/python/numpy/trypython.asp?filename=demo_numpy_array_access2d2

81

Example of an array:

[99,86,87,88,111,86,103,87,94,78,77,85,86]

What is Train/Test

Train/Test is a method to measure the accuracy of your model.

It is called Train/Test because you split the data set into two sets: a training set
and a testing set.

80% for training, and 20% for testing.

You train the model using the training set.

You test the model using the testing set.

Train the model means create the model.

Test the model means test the accuracy of the model.

The DecisionTreeClassifier works based on the decision tree algorithm, a supervised

learning algorithm used for classification tasks. Here's a simplified explanation of how

the algorithm works:

1. Decision Tree Structure:

A decision tree is a hierarchical structure where each node represents a decision based

on a specific feature. The tree is built recursively by splitting the data at each node

based on the feature that provides the best separation according to a certain criterion.

2. Splitting Criteria:

The decision tree algorithm selects the best feature to split the data at each node. The

selection is based on a splitting criterion, often using metrics like Gini impurity, entropy,

or information gain. These criteria measure the homogeneity of the target variable

within each subset created by the split.

82

MACHINE LEARNING CODE

import numpy as np

from sklearn.tree import DecisionTreeClassifier

Input data

X = np.array([[33, 65, 77, 22, 11, 99, 44, 66, 87]])

y = np.array(["fail", "pass", "pass", "fail", "fail", "pass", "fail", "pass", "pass"])

Transpose X to have samples along the rows

X = X.T # or X = np.transpose(X)

Create a DecisionTreeClassifier

dt_classifier = DecisionTreeClassifier(random_state=42)

Train the classifier on the training data

dt_classifier.fit(X, y)

Make predictions on the testing data (single sample)

new_data_point = np.array([[55]]) # Transpose if necessary

predictions = dt_classifier.predict(new_data_point)

print(predictions)

	Why Learn Python?
	Python Variables
	Comments
	Example

	Multi Line Comments
	Example

	Creating Variables
	Example
	Example (1)

	Casting
	Example

	Get the Type
	Example

	Single or Double Quotes?
	Example

	Case-Sensitive
	Example

	Python - Variable Names
	Variable Names
	Example
	Example (1)

	Multi Words Variable Names
	Camel Case
	Pascal Case
	Snake Case

	Python Variables - Assign Multiple Values
	Many Values to Multiple Variables
	Example

	One Value to Multiple Variables
	Example

	Unpack a Collection
	Example

	Python - Output Variables
	Output Variables
	Example
	Example (1)
	Example (2)
	Example (3)

	Python - Global Variables
	Global Variables
	Example
	Example (1)

	The global Keyword
	Example
	Example (1)

	Python Data Types
	Built-in Data Types
	Getting the Data Type
	Example

	Setting the Data Type

	Python User Input
	User Input
	Python 3.6
	Python 2.7

	Test Yourself With Exercises
	Exercise:

	Python Numbers
	Python Numbers
	Example
	Example (1)

	Int
	Example

	Float
	Example

	Complex
	Example

	Type Conversion
	Example

	Random Number
	Example

	est Yourself With Exercises
	Exercise:

	Python Casting
	Specify a Variable Type
	Example
	Example (1)
	Example (2)

	Python Strings are not the part of course work
	Python Iterative Statements
	Python For Loops
	Example

	Looping Through a String
	Example

	The break Statement
	Example
	Example (1)

	The continue Statement
	Example

	The range() Function
	Example
	Example (1)
	Example (2)

	Else in For Loop
	Example
	Example (1)

	Nested Loops
	Example

	The pass Statement
	Example

	Python While Loops
	The while Loop
	Example

	The break Statement
	Example

	The continue Statement
	Example

	The else Statement
	Example

	Test Yourself With Exercises
	Exercise:

	Python Functions
	Creating a Function
	Example

	Calling a Function
	Example

	Arguments
	Example

	Parameters or Arguments?
	Number of Arguments
	Example
	Example (1)

	Arbitrary Arguments, *args
	Example

	Keyword Arguments
	Example

	Arbitrary Keyword Arguments, **kwargs
	Example

	Default Parameter Value
	Example

	Passing a List as an Argument
	Example

	Return Values
	Example

	The pass Statement
	Example

	Recursion
	Example

	Test Yourself With Exercises
	Exercise:

	Python Operators
	Python Operators
	Example

	Python Arithmetic Operators
	Python Assignment Operators
	Python Comparison Operators
	Python Logical Operators
	Python Membership Operators
	Python Bitwise Operators
	Operator Precedence
	Example
	Example (1)
	Example (2)

	Test Yourself With Exercises
	Exercise:

	Python Math
	Built-in Math Functions
	Example
	Example (1)
	Example (2)

	The Math Module
	Example
	Example (1)
	Example (2)

	Python Random Module
	Python Classes and Objects
	Python Classes/Objects
	Create a Class
	Example

	Create Object
	Example

	The __init__() Function
	Example

	The __str__() Function
	Example
	Example (1)

	Object Methods
	Example

	The self Parameter
	Example

	Modify Object Properties
	Example

	Delete Object Properties
	Example

	Delete Objects
	Example

	The pass Statement
	Example

	Test Yourself With Exercises
	Exercise:

	Python Inheritance
	Python Inheritance
	Create a Parent Class
	Example

	Create a Child Class
	Example
	Example (1)

	Add the __init__() Function
	Example
	Example (1)

	Use the super() Function
	Example

	Add Properties
	Example
	Example (1)

	Add Methods
	Example

	Test Yourself With Exercises
	Exercise:

	Python Polymorphism
	Function Polymorphism
	String
	Example
	Tuple
	Example (1)
	Dictionary
	Example (2)

	Class Polymorphism
	Example

	Inheritance Class Polymorphism
	Example

	Definition of Abstraction
	Definition of Encapsulation
	Conclusion

	NumPy Tutorial
	Learning by Reading

	NumPy Introduction
	What is NumPy?
	Why Use NumPy?
	Why is NumPy Faster Than Lists?
	Which Language is NumPy written in?
	Where is the NumPy Codebase?

	NumPy Getting Started
	Installation of NumPy
	Import NumPy
	Example

	NumPy as np
	Example

	Checking NumPy Version
	Example

	NumPy Creating Arrays
	Create a NumPy ndarray Object
	Example
	Example (1)

	Dimensions in Arrays
	0-D Arrays
	Example

	1-D Arrays
	Example

	2-D Arrays
	Example

	Check Number of Dimensions?
	Example

	Higher Dimensional Arrays
	Example

	With Exercises
	Exercise:

	NumPy Array Indexing
	Access Array Elements
	Example
	Example (1)
	Example (2)

	Access 2-D Arrays
	Example
	Example (1)

	Machine Learning
	Data Set
	What is Train/Test
	1. Decision Tree Structure:
	2. Splitting Criteria:

