Discrete Sturcture

Set Theory

Actually, you will see that logic and set theory are very closely related.

- Set: A well defined unordered collection of distinct elements is called a set.
- Set: Collection of objects (called elements)
- $a \in A$ "a is an element of A'' "a is a member of A"
- $a \notin A$ "a is not an element of A''
- $A = \{a_1, a_2, ..., a_n\}$ "A contains $a_1, ..., a_n$ "
- Order of elements is insignificant

Set Equality

Sets A and B are equal if and only if they contain exactly the same elements.

Examples:

- \cdot A = {9, 2, 7, -3}, B = {7, 9, -3, 2}: A = B
- \cdot A = {dog, cat, horse}, $B = \{cat, horse, aquirrel, dog\}$: $A \neq B$
- \cdot A = {dog, cat, horse}, $B = \{cat, horse, dog, dog\}$: $A = B$

Examples for Sets

"Standard" Sets:

- Natural numbers
- Integers
- Positive Integers
- Real Numbers
- Rational Numbers **Q** = {1.5, 2.6, -3.8, 15, …} (correct definitions will follow)

$$
N = \{0, 1, 2, 3, ...\}
$$

\n
$$
Z = \{..., -2, -1, 0, 1, 2, ...\}
$$

\n
$$
Z^{+} = \{1, 2, 3, 4, ...\}
$$

\n
$$
R = \{47.3, -12, \pi, ...\}
$$

Examples for Sets

- Null set/Empty set: A set with no elements.
- Denoted as \varnothing , $\{\}$
- set"
- $A = \emptyset$ "empty set/null

Subsets

Subsets: If every element of Set A is also element of set B Then A is subset of B. $A \subset B$ "A is a subset of B'' $A \subseteq B$ if and only if every element of A is also an element of B. Examples:

 $A = \{3, 9\}, B = \{5, 9, 1, 3\}, \quad A \subseteq B$? true $A = \{3, 3, 3, 9\}, B = \{5, 9, 1, 3\}, A \subseteq B$? $A \subset B$? false true $A = \{1, 2, 3\}, B = \{2, 3, 4\},$

Subsets

Proper subsets: Let A and B be sets. A is the proper subset of B. IF and only if every element of A is in B but there is at least one element of B that is not in A.

 $A \subset B$ "A is a proper subset of B'' Example: Let A={1,3,5} B= {1,2,3,5}

Cardinality of Sets

Cardinality: Total no of elements in a set. Examples:

 $A = \{Mercedes, BMW, Alto\}, |A| = 3$ $B = \{1, \{2, 3\}, \{4, 5\}, 6\}$ |B| = 4 $C = \emptyset$ $|C| = 0$

The Power Set

Power set: If 'A' is finite set then set of all subsets of A is called power set of 'A'. Examples:

 $A = {x, y, z}$ $P(A) = \{ \emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\} \}$

Cartesian Product

The ordered n-tuple $(a_1, a_2, a_3, ..., a_n)$ is an ordered collection of n objects. Two ordered n-tuples $(a_1, a_2, a_3, ..., a_n)$ and $(b_1, b_2, b_3, ..., b_n)$ are equal if and only if they contain the same elements in the same order.

The Cartesian product of two sets is defined as: $AXB = \{ (a, b) \mid a \in A \wedge b \in B \}$

Cartesian Product

Example: $A = \{good, bad\}$, $B = \{student, prof\}$ $A \times B = \bigwedge$ (good, student), (good, prof), (bad, student), (bad, prof)} $B\times A =$ {(student, good), (prof, good), (student, bad), (prof, bad)} Example: $A = \{x, y\}$, $B = \{a, b, c\}$ $A \times B = \{(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)\}$

Set Operations

Union: $A \cup B = \{x \mid x \in A \lor x \in B\}$ Example: $A = \{a, b\}$, $B = \{b, c, d\}$ $A \cup B = \{a, b, c, d\}$ Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$ Example: $A = \{a, b\}$, $B = \{b, c, d\}$ $A \cap B = \{b\}$

Set Operations

Two sets are called disjoint if their intersection is empty, that is, they share no elements: $A \cap B = \varnothing$

The difference between two sets A and B contains exactly those elements of A that are not in B: $A-B = \{x \mid x \in A \wedge x \notin B\}$ Example: $A = \{a, b\}$, $B = \{b, c, d\}$, $A - B = \{a\}$

A function f from a set A to a set B is an assignment of exactly one element of B to each element of A. We write $f(a) = b$ if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write f: $A \rightarrow B$

If $f:A\rightarrow B$, we say that A is the domain of f and B is the codomain of f.

If $f(a)$ = b, we say that b is the image of a and a is the pre-image of b.

The range of $f:A\rightarrow B$ is the set of all images of all elements of A.

We say that $f:A \rightarrow B$ maps A to B .

- P = {Linda, Max, Kathy, Peter} C = {Boston, New York, Hong Kong, Moscow} f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong
- f(Peter) = New York

Other ways to represent f:

A function f is one-to-one if and only if it does not map two distinct elements of A onto the same element of B.

And again… f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Boston

Is f one-to-one?

No, Max and Peter are mapped onto the same element of the image.

g(Linda) = Moscow g(Max) = Boston g(Kathy) = Hong Kong g(Peter) = New York Is g one-to-one? Yes, each element is assigned a unique

element of the image.

How can we prove that a function f is one-to-one? Whenever you want to prove something, first take a look at the relevant definition(s): $\forall x, y \in A$ ($f(x) = f(y) \rightarrow x = y$)

Example: f:**RR** $f(x) = x^2$

Disproof by counterexample: $f(3) = f(-3)$, but $3 \neq -3$, so f is not one-to-one.

… and yet another example:

f:**RR**

 $f(x) = 3x$

One-to-one: $\forall x, y \in A$ ($f(x) = f(y) \rightarrow x = y$) To show: $f(x) \neq f(y)$ whenever $x \neq y$ (indirect proof)

 $x \neq y$

 \Leftrightarrow 3x \neq 3y

 $\Leftrightarrow f(x) \neq f(y)$,

so if $x \neq y$, then $f(x) \neq f(y)$, that is, f is one-to-one.

A function $f:A\rightarrow B$ with $A,B\subseteq R$ is called strictly increasing, if $\forall x,y \in A$ $(x \leftrightarrow y \rightarrow f(x) \leftrightarrow f(y))$, and strictly decreasing, if $\forall x,y \in A$ ($x \leftrightarrow y \rightarrow f(x) \rightarrow f(y)$).

Obviously, a function that is either strictly increasing or strictly decreasing is one-to-one.

A function $f:A\rightarrow B$ is called onto, or surjective, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a) = b$.

In other words, f is onto if and only if its range is its entire codomain.

A function $f: A \rightarrow B$ is a one-to-one correspondence, or a bijection, if and only if it is both one-to-one and onto.

Obviously, if f is a bijection and A and B are finite sets, then |A| = |B|.

Examples:

In the following examples, we use the arrow representation to illustrate functions $f:A\rightarrow B$.

In each example, the complete sets A and B are shown.

Is f injective? No! f is not even a function!

Inversion

An interesting property of bijections is that they have an **inverse function**.

The **inverse function** of the bijection $f:A\rightarrow B$ is the function $f^{-1}:B\rightarrow A$ with $f^{-1}(b)$ = a whenever $f(a)$ = b.

Inversion

Example:

f(Linda) = Moscow f(Max) = Boston f(Kathy) = Hong Kong f(Peter) = Lübeck f(Helena) = New York Clearly, f is bijective.

The inverse function f -1 is given by: f -1 (Moscow) = Linda f^{-1} (Boston) = Max f -1 (Hong Kong) = Kathy f -1 (Lübeck) = Peter f -1 (New York) = Helena

Inversion is only possible for bijections (= invertible functions)

Inversion

Composition

The **composition** of two functions $g: A \rightarrow B$ and f:B \rightarrow C, denoted by f°g, is defined by

 $(f°g)(a) = f(g(a))$

This means that

- **first**, function g is applied to element $a \in A$, mapping it onto an element of B,
- **then**, function f is applied to this element of B, mapping it onto an element of C.
- **Therefore**, the composite function maps from A to C.

Example:

 $f(x) = 7x - 4$, $g(x) = 3x$, $f:R\rightarrow R$, $g:R\rightarrow R$

 $(f°q)(5) = f(q(5)) = f(15) = 105 - 4 = 101$ $(f°q)(x) = f(q(x)) = f(3x) = 21x - 4$

Composition

Composition of a function and its inverse:

 $(f^{-1}of)(x) = f^{-1}(f(x)) = x$

The composition of a function and its inverse is the **identity function** $i(x) = x$.

Graphs

The graph of a function $f:A\rightarrow B$ is the set of ordered pairs $\{(\mathbf{a},\mathbf{b}) \mid \mathbf{a} \in A \text{ and } f(\mathbf{a}) = \mathbf{b}\}.$

The graph is a subset of $A\times B$ that can be used to visualize f in a two-dimensional coordinate system.

Floor and Ceiling Functions

The **floor** and **ceiling** functions map the real numbers onto the integers $(R\rightarrow Z)$.

The floor function assigns to reR the largest $z \in Z$ with $z \le r$, denoted by $\lfloor r \rfloor$.

Examples: $\lfloor 2.3 \rfloor$ = 2, $\lfloor 2 \rfloor$ = 2, $\lfloor 0.5 \rfloor$ = 0, $\lfloor -3.5 \rfloor$ = -4

The ceiling function assigns to rER the smallest $z\in Z$ with $z\geq r$, denoted by r .

Examples: $\lceil 2.3 \rceil = 3$, $\lceil 2 \rceil = 2$, $\lceil 0.5 \rceil = 1$, $\lceil -3.5 \rceil = -3$

Now, something about

BooleanAl gebra

Boolean Algebra

Boolean algebra provides the operations and the rules for working with the set **{0, 1}.**

These are the rules that underlie **electronic circuits**, and the methods we will discuss are fundamental to **VLSI design**.

We are going to focus on three operations:

- Boolean complementation,
- Boolean sum, and
- Boolean product

Boolean Operations

The **complement** is denoted by a bar (on the slides, we will use a minus sign). It is defined by

 $-0 = 1$ and $-1 = 0$.

The **Boolean sum**, denoted by + or by OR, has the following values:

 $1 + 1 = 1$, $1 + 0 = 1$, $0 + 1 = 1$, $0 + 0 = 0$

The **Boolean product**, denoted by \cdot or by AND, has the following values:

 $1 \cdot 1 = 1, \quad 1 \cdot 0 = 0, \quad 0 \cdot 1 = 0, \quad 0 \cdot 0 = 0$

Definition: Let $B = \{0, 1\}$. The variable x is called a **Boolean variable** if it assumes values only from B.

A function from Bⁿ, the set $\{(x_1, x_2, ..., x_n) | x_i \in B,$ $1 \le i \le n$, to B is called a **Boolean function of degree n**.

Boolean functions can be represented using expressions made up from the variables and Boolean operations.

The Boolean expressions in the variables $x_1, x_2, ...,$ x_n are defined recursively as follows:

- \cdot 0, 1, x_1 , x_2 , ..., x_n are Boolean expressions.
- If E_1 and E_2 are Boolean expressions, then (-E₁), (E_1E_2) , and $(E_1 + E_2)$ are Boolean expressions.

Each Boolean expression represents a Boolean function. The values of this function are obtained by substituting 0 and 1 for the variables in the expression.

For example, we can create Boolean expression in the variables x, y, and z using the "building blocks" 0, 1, x, y, and z, and the construction rules: Since x and y are Boolean expressions, so is xy. Since z is a Boolean expression, so is (-z). Since xy and (-z) are expressions, so is xy + (-z). … and so on…

Example: Give a Boolean expression for the Boolean function F(x, y) as defined by the following table:

Possible solution: $F(x, y) = (-x) \cdot y$

Boolean Functions and Expressions **Another Example:**

Possible solution I: $F(x, y, z) = -(xz + y)$

Possible solution II: $F(x, y, z) = (- (xz)) (-y)$

There is a simple method for deriving a Boolean expression for a function that is defined by a table. This method is based on **minterms**.

Definition: A **literal** is a Boolean variable or its complement. A **minterm** of the Boolean variables x_1 , $x_2, ..., x_n$ is a Boolean product $y_1y_2...y_n$, where y_i = x_i or $y_i = -x_i$.

Hence, a minterm is a product of n literals, with one literal for each variable.

Definition: The Boolean functions F and G of n variables are **equal** if and only if $F(b_1, b_2, ..., b_n) =$ $\bm{\mathcal{G}}(\bm{{\mathsf{b}}}_1, \bm{{\mathsf{b}}}_2, ..., \bm{{\mathsf{b}}}_{\mathsf{n}})$ whenever $\bm{{\mathsf{b}}}_1, \bm{{\mathsf{b}}}_2, ..., \bm{{\mathsf{b}}}_{\mathsf{n}}$ belong to B. Two different Boolean expressions that represent the same function are called **equivalent**. For example, the Boolean expressions xy , $xy + 0$, and xy.1 are equivalent.

The **complement** of the Boolean function F is the function -F, where -F($b_1, b_2, ..., b_n$) = -(F(b₁, b₂, ..., b_n)).

Let F and G be Boolean functions of degree n. The **Boolean sum F+G** and **Boolean product FG** are then defined by

 $(F + G)(b_1, b_2, ..., b_n) = F(b_1, b_2, ..., b_n) + G(b_1, b_2, ..., b_n)$ $(FG)(b_1, b_2, ..., b_n) = F(b_1, b_2, ..., b_n) G(b_1, b_2, ..., b_n)$

Question: How many different Boolean functions of degree 1 are there?

Solution: There are four of them, F_1 , F_2 , F_3 , and F_4 :

Question: How many different Boolean functions of degree 2 are there?

Solution: There are 16 of them, F₁, F₂, …, F₁₆:

Question: How many different Boolean functions of degree n are there?

Solution:

There are 2ⁿ different n-tuples of 0s and 1s.

A Boolean function is an assignment of 0 or 1 to each of these 2ⁿ different n-tuples.

Therefore, there are 2² n different Boolean functions.

Definition of a Boolean Algebra

All the properties of Boolean functions and expressions that we have discovered also apply to **other mathematical structures** such as propositions and sets and the operations defined on them.

If we can show that a particular structure is a Boolean algebra, then we know that all results established about Boolean algebras apply to this structure.

For this purpose, we need an **abstract definition** of a Boolean algebra.

Definition of a Boolean Algebra **Definition:** A Boolean algebra is a set B with two binary operations \vee and \wedge , elements 0 and 1, and a unary operation – such that the following properties hold for all x, y, and z in B: $x \vee 0 = x$ and $x \wedge 1 = x$ (identity laws) $x \vee (-x) = 1$ and $x \wedge (-x) = 0$ (domination laws) $(x \vee y) \vee z = x \vee (y \vee z)$ and $(x \wedge y) \wedge z = x \wedge (y \wedge z)$ and (associative laws) $x \vee y = y \vee x$ and $x \wedge y = y \wedge x$ (commutative laws) $x \vee (y \wedge z)$ = $(x \vee y) \wedge (x \vee z)$ and $x \wedge (y \vee z)$ = $(x \wedge y) \vee (x \wedge z)$ (distributive laws)

Logic Gates

Electronic circuits consist of so-called gates. There are three basic types of gates:

Logic Gates

Example: How can we build a circuit that computes the function $xy + (-x)y$?

Compare the equivalence laws of them