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Discrete Sturcture

Set Theory

Actually, you will see that logic and 
set theory are very closely related.
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Set Theory

• Set: A well defined unordered collection of 
distinct elements is called a set.

• Set: Collection of objects (called elements)

• aA “a is an element of A”
“a is a member of A”

• aA “a is not an element of A”

• A = {a1, a2, …, an}   “A contains a1, …, an”

• Order of elements is insignificant
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Set Equality

Sets A and B are equal if and only if they 
contain exactly the same elements.

Examples:

• A = {9, 2, 7, -3}, B = {7, 9, -3, 2} : A = B

• A = {dog, cat, horse}, 
B = {cat, horse, squirrel, dog} : A  B

• A = {dog, cat, horse}, 
B = {cat, horse, dog, dog} : A = B
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Examples for Sets

“Standard” Sets:

• Natural numbers N = {0, 1, 2, 3, …}

• Integers Z = {…, -2, -1, 0, 1, 2, …} 

• Positive Integers Z+ = {1, 2, 3, 4, …}

• Real Numbers R = {47.3, -12, , …}

• Rational Numbers Q = {1.5, 2.6, -3.8, 15, …}

(correct definitions will follow)
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Examples for Sets

• Null set/Empty set: A set with no 
elements.

• Denoted as  , {}

• A =  “empty set/null 
set”
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Subsets
Subsets: If every element of Set A is also 
element of set B Then A is subset of B.
A  B “A is a subset of B”
A  B if and only if every element of A is also  

an element of B.
Examples:

A = {3, 9}, B = {5, 9, 1, 3},           A  B ? true

A = {3, 3, 3, 9}, B = {5, 9, 1, 3},   A  B ?

false

true

A = {1, 2, 3}, B = {2, 3, 4},           A  B ?
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Subsets

Proper subsets:
Let A and B be sets. A is the proper 

subset of B. IF and only if every 
element of A is in B but there is at 
least one element of B that is not in 
A.

A  B     “A is a proper subset of B”
Example:
Let A={1,3,5} B= {1,2,3,5}
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Cardinality of Sets

Cardinality: Total no of elements in a set.

Examples:

A = {Mercedes, BMW, Alto},   |A| = 3

B = {1, {2, 3}, {4, 5}, 6} |B| = 4

C =  |C| = 0
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The Power Set

Power set: If ‘A’ is finite set then set of all 
subsets of A is called power set of ‘A’.

Examples:

A = {x, y, z}

P(A) = {, {x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}
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Cartesian Product
The ordered n-tuple (a1, a2, a3, …, an) is an 
ordered collection of n objects.

Two ordered n-tuples (a1, a2, a3, …, an) and 
(b1, b2, b3, …, bn) are equal if and only if they 
contain the same elements in the same order.

The Cartesian product of two sets is defined as:

AB = {(a, b) | aA  bB}
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Cartesian Product

Example:

A = {good, bad}, B = {student, prof}

AB = {
(good, student), (good, prof), (bad, student), (bad, prof)}

(prof, bad)}(student, good), (prof, good), (student, bad),BA = {

Example: A = {x, y}, B = {a, b, c}
AB = {(x, a), (x, b), (x, c), (y, a), (y, b), (y, c)}
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Set Operations

Union: AB = {x | xA  xB}

Example: A = {a, b}, B = {b, c, d}
AB = {a, b, c, d} 

Intersection: AB = {x | xA  xB}

Example: A = {a, b}, B = {b, c, d}
AB = {b}
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Set Operations

Two sets are called disjoint if their intersection 
is empty, that is, they share no elements:
AB = 

The difference between two sets A and B 
contains exactly those elements of A that are 
not in B:
A-B = {x | xA  xB}
Example: A = {a, b}, B = {b, c, d}, A-B = {a}
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Functions
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Functions

A function f from a set A to a set B is an 
assignment of exactly one element of B to each
element of A.

We write

f(a) = b

if b is the unique element of B assigned by the 
function f to the element a of A.

If f is a function from A to B, we write

f: AB
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Functions

If f:AB, we say that A is the domain of f and B 
is the codomain of f. 

If f(a) = b, we say that b is the image of a and a is 
the pre-image of b.

The range of f:AB is the set of all images of all
elements of A.

We say that f:AB maps A to B.
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Functions

P = {Linda, Max, Kathy, Peter}
C = {Boston, New York, Hong Kong, Moscow}

f(Linda) = Moscow
f(Max) = Boston
f(Kathy) = Hong Kong
f(Peter) = New York
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Functions

Other ways to represent f:

BostonPeter

Hong 
Kong

Kathy

BostonMax

MoscowLinda

f(x)x Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow
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Properties of Functions

A function f is one-to-one if and only if it does 
not map two distinct elements of A onto the same 
element of B.
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Properties of Functions

And again…

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Boston

Is f one-to-one?

No, Max and Peter are 
mapped onto the same 
element of the image.

g(Linda) = Moscow

g(Max) = Boston

g(Kathy) = Hong Kong

g(Peter) = New York

Is g one-to-one?

Yes, each element is 
assigned a unique 
element of the image.
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Properties of Functions

How can we prove that a function f is one-to-one?

Whenever you want to prove something, first 
take a look at the relevant definition(s):

x, yA (f(x) = f(y)  x = y)

Example:

f:RR

f(x) = x2

Disproof by counterexample:

f(3) = f(-3), but 3  -3, so f is not one-to-one.
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Properties of Functions

… and yet another example:

f:RR

f(x) = 3x

One-to-one: x, yA (f(x) = f(y)  x = y)

To show: f(x)  f(y) whenever x  y (indirect proof)

x  y

 3x  3y

 f(x)  f(y), 

so if x  y, then f(x)  f(y), that is, f is one-to-one.
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Properties of Functions

A function f:AB with A,B  R is called strictly 
increasing, if 

x,yA (x < y  f(x) < f(y)),

and strictly decreasing, if

x,yA (x < y  f(x) > f(y)).

Obviously, a function that is either strictly 
increasing or strictly decreasing is one-to-one.
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Properties of Functions

A function f:AB is called onto, or surjective, if 
and only if for every element bB there is an 
element aA with f(a) = b.

In other words, f is onto if and only if its range is 
its entire codomain.

A function f: AB is a one-to-one correspondence, 
or a bijection, if and only if it is both one-to-one 
and onto.

Obviously, if f is a bijection and A and B are finite 
sets, then |A| = |B|.
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Properties of Functions

Examples:

In the following examples, we use the arrow 
representation to illustrate functions f:AB. 

In each example, the complete sets A and B are 
shown.
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Properties of Functions

Is f injective?

No.

Is f surjective?

No.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow
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Properties of Functions

Is f injective?

No.

Is f surjective?

Yes.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Paul



Spring 2003 CMSC 203 - Discrete Structures 29

Properties of Functions

Is f injective?

Yes.

Is f surjective?

No.

Is f bijective?

No.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Lübeck
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Properties of Functions

Is f injective?

No! f is not even
a function!

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

Lübeck
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Properties of Functions

Is f injective?

Yes.

Is f surjective?

Yes.

Is f bijective?

Yes.

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

LübeckHelena
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Inversion

An interesting property of bijections is that 
they have an inverse function.

The inverse function of the bijection f:AB 
is the function f-1:BA with 

f-1(b) = a whenever f(a) = b. 
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Inversion

Example:

f(Linda) = Moscow

f(Max) = Boston

f(Kathy) = Hong Kong

f(Peter) = Lübeck

f(Helena) = New York

Clearly, f is bijective.

The inverse function  
f-1 is given by:

f-1(Moscow) = Linda

f-1(Boston) = Max

f-1(Hong Kong) = Kathy

f-1(Lübeck) = Peter

f-1(New York) = Helena

Inversion is only 
possible for bijections
(= invertible functions)
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Inversion

Linda

Max

Kathy

Peter

Boston

New York

Hong Kong

Moscow

LübeckHelena

f

f-1

f-1:CP is no 
function, because 
it is not defined 
for all elements of 
C and assigns two 
images to the pre-
image New York.
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Composition

The composition of two functions g:AB and  
f:BC, denoted by  fg, is defined by 

(fg)(a) = f(g(a))

This means that 
• first, function g is applied to element aA,

mapping it onto an element of B,
• then, function f is applied to this element of 

B, mapping it onto an element of C.
• Therefore, the composite function maps 

from A to C.
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Composition

Example:

f(x) = 7x – 4, g(x) = 3x,

f:RR, g:RR

(fg)(5) = f(g(5)) = f(15) = 105 – 4 = 101

(fg)(x) = f(g(x)) = f(3x) = 21x - 4
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Composition

Composition of a function and its inverse:

(f-1f)(x) = f-1(f(x)) = x

The composition of a function and its inverse 
is the identity function i(x) = x.
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Graphs

The graph of a function f:AB is the set of 
ordered pairs {(a, b) | aA and f(a) = b}.

The graph is a subset of AB that can be used 
to visualize f in a two-dimensional coordinate 
system.
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Floor and Ceiling Functions

The floor and ceiling functions map the real 
numbers onto the integers (RZ).

The floor function assigns to rR the largest 
zZ with z  r, denoted by r.

Examples: 2.3 = 2, 2 = 2, 0.5 = 0, -3.5 = -4

The ceiling function assigns to rR the smallest 
zZ with z  r, denoted by r.

Examples: 2.3 = 3, 2 = 2, 0.5 = 1, -3.5 = -3 
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Now, something about

BooleanAl
gebra
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Boolean Algebra

Boolean algebra provides the operations and the 
rules for working with the set {0, 1}.

These are the rules that underlie electronic 
circuits, and the methods we will discuss are 
fundamental to VLSI design.

We are going to focus on three operations:

• Boolean complementation,

• Boolean sum, and

• Boolean product
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Boolean Operations

The complement is denoted by a bar (on the slides, 
we will use a minus sign). It is defined by

-0 = 1   and   -1 = 0.

The Boolean sum, denoted by + or by OR, has the 
following values:

1 + 1 = 1,    1 + 0 = 1,    0 + 1 = 1,    0 + 0 = 0

The Boolean product, denoted by  or by AND, has 
the following values:

1  1 = 1,    1  0 = 0,    0  1 = 0,    0  0 = 0
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Boolean Functions and Expressions

Definition: Let B = {0, 1}. The variable x is called a 
Boolean variable if it assumes values only from B.

A function from Bn, the set {(x1, x2, …, xn) |xiB, 
1  i  n}, to B is called a Boolean function of 
degree n.

Boolean functions can be represented using 
expressions made up from the variables and 
Boolean operations.



Spring 2003 CMSC 203 - Discrete Structures 44

Boolean Functions and Expressions

The Boolean expressions in the variables x1, x2, …, 
xn are defined recursively as follows:

• 0, 1, x1, x2, …, xn are Boolean expressions.

• If E1 and E2 are Boolean expressions, then (-E1), 
(E1E2), and (E1 + E2) are Boolean expressions.

Each Boolean expression represents a Boolean 
function. The values of this function are obtained 
by substituting 0 and 1 for the variables in the 
expression.
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Boolean Functions and Expressions

For example, we can create Boolean expression in 
the variables x, y, and z using the “building blocks”
0, 1, x, y, and z, and the construction rules:

Since x and y are Boolean expressions, so is xy.

Since z is a Boolean expression, so is (-z).

Since xy and (-z) are expressions, so is xy + (-z).

… and so on…
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Boolean Functions and Expressions

Example: Give a Boolean expression for the 
Boolean function F(x, y) as defined by the following 
table:

110

001

011

000

F(x, y)yx

Possible solution: F(x, y) = (-x)y
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Boolean Functions and Expressions
Another Example:

Possible solution I:

F(x, y, z) = -(xz + y)

0

0

1

1

F(x, y, z)

1

0

1

0

z

00

10

10

00

yx

0

0

0

1

1

0

1

0

11

11

01

01

Possible solution II:

F(x, y, z) = (-(xz))(-y)
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Boolean Functions and Expressions

There is a simple method for deriving a Boolean 
expression for a function that is defined by a 
table. This method is based on minterms.

Definition: A literal is a Boolean variable or its 
complement. A minterm of the Boolean variables x1, 
x2, …, xn is a Boolean product y1y2…yn, where yi = xi

or yi = -xi.

Hence, a minterm is a product of n literals, with 
one literal for each variable.
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Boolean Functions and Expressions
Consider F(x,y,z) again: F(x, y, z) = 1 if and 

only if:

x = y = z = 0  or

x = y = 0, z = 1 or

x = 1, y = z = 0

Therefore,

F(x, y, z) =
(-x)(-y)(-z) +
(-x)(-y)z +
x(-y)(-z)

0

0

1

1

F(x, y, z)

1

0

1

0

z

00

10

10

00

yx

0

0

0

1

1

0

1

0

11

11

01

01
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Boolean Functions and Expressions

Definition: The Boolean functions F and G of n 
variables are equal if and only if F(b1, b2, …, bn) = 
G(b1, b2, …, bn) whenever b1, b2, …, bn belong to B.

Two different Boolean expressions that represent 
the same function are called equivalent.

For example, the Boolean expressions xy, xy + 0, 
and xy1 are equivalent.
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Boolean Functions and Expressions

The complement of the Boolean function F is the 
function –F, where –F(b1, b2, …, bn) = 
-(F(b1, b2, …, bn)).

Let F and G be Boolean functions of degree n. The 
Boolean sum F+G and Boolean product FG are then 
defined by

(F + G)(b1, b2, …, bn) = F(b1, b2, …, bn) + G(b1, b2, …, bn)

(FG)(b1, b2, …, bn) = F(b1, b2, …, bn) G(b1, b2, …, bn)
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Boolean Functions and Expressions

Question: How many different Boolean functions 
of degree 1 are there?

Solution: There are four of them, F1, F2, F3, and F4:

0

1

F3

1

0

F2

101

100

F4F1x
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Boolean Functions and Expressions

Question: How many different Boolean functions 
of degree 2 are there?

Solution: There are 16 of them, F1, F2, …, F16:

1

0

0

0

F2

0

0

0

0

F1

010

101

011

000

F3yx

1

1

1

0

F8

0

1

1

0

F7

0

0

0

1

F9

0

0

1

0

F5

1

1

0

0

F4

1

0

1

0

F6

0

1

0

1

F11

1

0

0

1

F10

0

1

1

1

F12

1

0

1

1

F1
4

0

0

1

1

F1
3

1

1

0

1

F1
5

1

1

1

1

F16
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Boolean Functions and Expressions

Question: How many different Boolean functions 
of degree n are there?

Solution:

There are 2n different n-tuples of 0s and 1s.

A Boolean function is an assignment of 0 or 1 to 
each of these 2n different n-tuples.

Therefore, there are 22n
different Boolean 

functions.
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Definition of a Boolean Algebra

All the properties of Boolean functions and 
expressions that we have discovered also apply to 
other mathematical structures such as 
propositions and sets and the operations defined 
on them.

If we can show that a particular structure is a 
Boolean algebra, then we know that all results 
established about Boolean algebras apply to this 
structure.

For this purpose, we need an abstract definition
of a Boolean algebra.
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Definition of a Boolean Algebra
Definition: A Boolean algebra is a set B with two 
binary operations  and , elements 0 and 1, and a 
unary operation – such that the following 
properties hold for all x, y, and z in B:

x  0 = x   and   x  1 = x            (identity laws)

x  (-x) = 1   and   x  (-x) = 0    (domination laws)

(x  y)  z = x  (y  z)   and   
(x  y)  z = x  (y  z)   and      (associative laws)

x  y = y  x   and x  y = y  x  (commutative laws)

x  (y  z) = (x  y)  (x  z) and
x  (y  z) = (x  y)  (x  z)      (distributive laws)
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Logic Gates

Electronic circuits consist of so-called gates.
There are three basic types of gates:

x

y

x+y
OR gate

AND gate
x

y

xy

x -x
inverter
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Logic Gates

Example: How can we build a circuit that computes 
the function xy + (-x)y ?

xy + (-x)y

x

y

xy

x -x

y

(-x)y
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Logic, Sets, and Boolean Algebra

Logic Set Boolean Algebra

False  0

True U 1

AB AB AB

AB AB A+B

A AC

Compare the equivalence laws of them

A


