
Lecture 10Lecture 10

Shared Memory Multiprocessors

Institute of Computer Science & Information Technology,
Faculty of Management & Computer Sciences,

The University of Agriculture, Peshawar, Pakistan.

Shared Memory MultiprocessorsShared Memory Multiprocessors

 Any memory location can be accessible by
any of the processors.

 A single address space exists, meaning that
each memory location is given a uniqueeach memory location is given a unique
address within a single range of address.

 For small number of processors, common
architecture is the single bus architecture:

Dr. Muhammad Asim, ICS/IT, FMCS 2

Shared Memory Multiprocessors (1)Shared Memory Multiprocessors (1)

 This architecture is only suitable for, perhaps, up to
eight processors, because the bus can only be used
by one processor at a time.

Dr. Muhammad Asim, ICS/IT, FMCS 3

Programming AlternativesProgramming Alternatives
1. Using a supportive programming language.

2. Using library routines with an existing sequential language.

3. Using a sequential programming language and ask a parallelizing
compiler to convert it into parallel executable code.

4. UNIX processes.

5. P-Threads (POSIX thread)

6. Using an existing sequential programming language
supplemented with compiler directives for specifying
parallelism., e.g., OpenMP.

Dr. Muhammad Asim, ICS/IT, FMCS 4

Constructs for Parallelism Constructs for Parallelism

 Creating Concurrent Processes

◦ FORK-JOIN was described by Conway in 1963,
and was known before 1960.

◦ In the original construct a FORK statement
generates one new path for a concurrent
process and the concurrent processes use the
JOIN statement at their ends.

Dr. Muhammad Asim, ICS/IT, FMCS 5

UNIX Heavyweight ProcessesUNIX Heavyweight Processes
 The UNIX system call fork() creates a new

process.

 The new process(child process) is an exact copy
of the calling process except that it has a unique
process ID.process ID.

 It has its own copy of the parent’s variables.

 They are assigned the same values as the original
variables initially.

Dr. Muhammad Asim, ICS/IT, FMCS 6

 The forked process starts execution at the
point of the fork.

 On success, fort() returns 0 to the child
process and returns the process ID of the
child process to the parent process.child process to the parent process.

 Processes are ‘joined’ with the system calls
wait() and exit():

Dr. Muhammad Asim, ICS/IT, FMCS 7

Dr. Muhammad Asim, ICS/IT, FMCS 8

OS Review: ProcessesOS Review: Processes
 processes contain information about program

resources and program execution state, including:
– Process ID, process group ID, user ID, and group ID
– Environment,Working directory, Program instructions
– Registers, Stack, Heap
– File descriptors, Signal actions– File descriptors, Signal actions
– Shared libraries, Inter-process communication tools

(such as message queues, pipes, semaphores, or
shared memory).

 When we run a program, a process is created
– E.g. ./a.out, ./axpy, etc
– fork () system call

Dr. Muhammad Asim, ICS/IT, FMCS 9

ThreadsThreads
 Threads use, and exist within, the process resources.

 Scheduled and run as independent entities.

 Duplicate only the bare essential resources that enable them
to exist as executable code.

Dr. Muhammad Asim, ICS/IT, FMCS 10

What is a Thread in RealWhat is a Thread in Real
 OS view

– An independent stream of instructions that can be
scheduled to run by the OS.

 Software developer view
– A “procedure” that runs independently from the main

programprogram
 Imagine multiple such procedures of main run simultaneously

and/or independently

– Sequential program: a single stream of instructions in a
program.

– Multi-threaded program: a program with multiple
streams
 Multiple threads are needed to use multiple cores/CPUs

Dr. Muhammad Asim, ICS/IT, FMCS 11

POSIX threads (POSIX threads (PThreadsPThreads))
 Threads used to implement parallelism in shared

memory multiprocessor systems, such as SMPs

 Historically, hardware vendors have implemented
their own proprietary versions of threads
– Portability a concern for software developers.– Portability a concern for software developers.

 For UNIX systems, a standardized C language
threads programming interface has been
specified by the IEEE POSIX 1003.1c standard.
– Implementations that adhere to this standard are

referred to as POSIX threads

Dr. Muhammad Asim, ICS/IT, FMCS 12

The POSIX Thread API The POSIX Thread API
 Commonly referred to as PThreads, POSIX has

emerged as the standard threads API, supported
by most vendors.
– Implemented with a pthread.h header/include file and

a thread library

 Functionalities  Functionalities
– Thread management, e.g. creation and joining
– Thread synchronization primitives

 Mutex
 Condition variables
 •Reader/writer locks

– Thread-specific data

Dr. Muhammad Asim, ICS/IT, FMCS 13

PThreadPThread APIAPI
 #include <pthread.h>

 gcc -Ipthread

Dr. Muhammad Asim, ICS/IT, FMCS 14

Thread CreationThread Creation
 Initially, main() program comprises a single, default thread

– All other threads must be explicitly created

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void * arg);

• thread: An opaque, unique identifier for the new thread returned by the subroutine
• attr: An opaque attribute object that may be used to set thread attributes You can specify a

thread attributes object, or NULL for the default values
• start_routine: the C routine that the thread will execute once it is created
• arg: A single argument that may be passed to start_routine. It must be passed by reference as a

pointer cast of type void. NULL may be used if no argument is to be passed.

Opaque object: A letter is an opaque object to the mailman, and sender and receiver know the
information.

Dr. Muhammad Asim, ICS/IT, FMCS 15

Thread CreationThread Creation
 • pthread_create creates a new thread and makes it executable, i.e. run

immediately in theory

– can be called any number of times from anywhere within your code

 Once created, threads are peers, and may create other threads

 There is no implied hierarchy or dependency between threads

Dr. Muhammad Asim, ICS/IT, FMCS 16

Terminating ThreadsTerminating Threads
 pthread_exit is used to explicitly exit a thread

– Called after a thread has completed its work and is no
longer required to exist

 If main()finishes before the threads it has created
– If exits with pthread_exit(), the other threads will continue

to execute
– Otherwise, they will be automatically terminated when– Otherwise, they will be automatically terminated when

main()finishes
 The programmer may optionally specify a termination

status, which is stored as a void pointer for any thread
that may join the calling thread

 Cleanup: the pthread_exit()routine does not close files
– Any files opened inside the thread will remain open after

the thread is terminated

Dr. Muhammad Asim, ICS/IT, FMCS 17

Thread AttributeThread Attribute
int pthread_create(

pthread_t *thread,
const pthread_attr_t *attr,

void *(*start_routine)(void *),
void * arg);

 Attribute contains details about
– whether scheduling policy is inherited or explicit– whether scheduling policy is inherited or explicit
– scheduling policy, scheduling priority
– stack size, stack guard region size

 pthread_attr_init and pthread_attr_destroy are used to
initialize/destroy the thread attribute object

 Other routines are then used to query/set specific attributes in
the thread attribute object

Dr. Muhammad Asim, ICS/IT, FMCS 18

Passing Arguments to ThreadsPassing Arguments to Threads
 The pthread_create() routine permits the programmer to

pass one argument to the thread start routine

 For cases where multiple arguments must be passed:
– Create a structure which contains all of the arguments
– Then pass a pointer to the object of that structure in the

pthread_create()routine.pthread_create()routine.
– All arguments must be passed by reference and cast to (void *)

 Make sure that all passed data is thread safe: data racing
– it can not be changed by other threads
– It can be changed in a determinant way

• Thread coordination

Dr. Muhammad Asim, ICS/IT, FMCS 19

Shared Memory and ThreadsShared Memory and Threads
 All threads have access to the same global, shared memory

 Threads also have their own private data

 Programmers are responsible for synchronizing access
(protecting) globally shared data.

Dr. Muhammad Asim, ICS/IT, FMCS 20

Thread ConsequencesThread Consequences
 • Shared State!

– Accidental changes to global variables can be fatal.
– Changes made by one thread to shared system resources

(such as closing a file) will be seen by all other threads
– Two pointers having the same value point to the same data
– Reading and writing to the same memory locations is

possiblepossible
– Therefore requires explicit synchronization by the

programmer
 Many library functions are not thread-safe

– Library Functions that return pointers to static internal
memory. E.g. gethostbyname()

 Lack of robustness
– Crash in one thread will crash the entire process

Dr. Muhammad Asim, ICS/IT, FMCS 21

ThreadThread--safenesssafeness
 Thread-safeness: in a nutshell, refers an

application's ability to execute multiple threads
simultaneously without "clobbering" shared data
or creating "race" conditions

 Example: an application creates several threads,
each of which makes a call to the same library
routine:routine:
– This library routine accesses/modifies a global

structure or location in memory.
– As each thread calls this routine it is possible that they

may try to modify this global structure/memory
location at the same time.

– If the routine does not employ some sort of
synchronization constructs to prevent data corruption,
then it is not threadsafe.

Dr. Muhammad Asim, ICS/IT, FMCS 22

Why Why PThreadsPThreads (not processes)?(not processes)?
 The primary motivation

– To realize potential program performance gains

 Compared to the cost of creating and managing a process
– A thread can be created with much less OS overhead

 Managing threads requires fewer system resources than Managing threads requires fewer system resources than
managing processes

 All threads within a process share the same address space

 Inter-thread communication is more efficient and, in many
cases, easier to use than inter-process communication

Dr. Muhammad Asim, ICS/IT, FMCS 23

