
Lecture 10Lecture 10

Shared Memory Multiprocessors

Institute of Computer Science & Information Technology,
Faculty of Management & Computer Sciences,

The University of Agriculture, Peshawar, Pakistan.

Shared Memory MultiprocessorsShared Memory Multiprocessors

 Any memory location can be accessible by
any of the processors.

 A single address space exists, meaning that
each memory location is given a uniqueeach memory location is given a unique
address within a single range of address.

 For small number of processors, common
architecture is the single bus architecture:

Dr. Muhammad Asim, ICS/IT, FMCS 2

Shared Memory Multiprocessors (1)Shared Memory Multiprocessors (1)

 This architecture is only suitable for, perhaps, up to
eight processors, because the bus can only be used
by one processor at a time.

Dr. Muhammad Asim, ICS/IT, FMCS 3

Programming AlternativesProgramming Alternatives
1. Using a supportive programming language.

2. Using library routines with an existing sequential language.

3. Using a sequential programming language and ask a parallelizing
compiler to convert it into parallel executable code.

4. UNIX processes.

5. P-Threads (POSIX thread)

6. Using an existing sequential programming language
supplemented with compiler directives for specifying
parallelism., e.g., OpenMP.

Dr. Muhammad Asim, ICS/IT, FMCS 4

Constructs for Parallelism Constructs for Parallelism

 Creating Concurrent Processes

◦ FORK-JOIN was described by Conway in 1963,
and was known before 1960.

◦ In the original construct a FORK statement
generates one new path for a concurrent
process and the concurrent processes use the
JOIN statement at their ends.

Dr. Muhammad Asim, ICS/IT, FMCS 5

UNIX Heavyweight ProcessesUNIX Heavyweight Processes
 The UNIX system call fork() creates a new

process.

 The new process(child process) is an exact copy
of the calling process except that it has a unique
process ID.process ID.

 It has its own copy of the parent’s variables.

 They are assigned the same values as the original
variables initially.

Dr. Muhammad Asim, ICS/IT, FMCS 6

 The forked process starts execution at the
point of the fork.

 On success, fort() returns 0 to the child
process and returns the process ID of the
child process to the parent process.child process to the parent process.

 Processes are ‘joined’ with the system calls
wait() and exit():

Dr. Muhammad Asim, ICS/IT, FMCS 7

Dr. Muhammad Asim, ICS/IT, FMCS 8

OS Review: ProcessesOS Review: Processes
 processes contain information about program

resources and program execution state, including:
– Process ID, process group ID, user ID, and group ID
– Environment,Working directory, Program instructions
– Registers, Stack, Heap
– File descriptors, Signal actions– File descriptors, Signal actions
– Shared libraries, Inter-process communication tools

(such as message queues, pipes, semaphores, or
shared memory).

 When we run a program, a process is created
– E.g. ./a.out, ./axpy, etc
– fork () system call

Dr. Muhammad Asim, ICS/IT, FMCS 9

ThreadsThreads
 Threads use, and exist within, the process resources.

 Scheduled and run as independent entities.

 Duplicate only the bare essential resources that enable them
to exist as executable code.

Dr. Muhammad Asim, ICS/IT, FMCS 10

What is a Thread in RealWhat is a Thread in Real
 OS view

– An independent stream of instructions that can be
scheduled to run by the OS.

 Software developer view
– A “procedure” that runs independently from the main

programprogram
 Imagine multiple such procedures of main run simultaneously

and/or independently

– Sequential program: a single stream of instructions in a
program.

– Multi-threaded program: a program with multiple
streams
 Multiple threads are needed to use multiple cores/CPUs

Dr. Muhammad Asim, ICS/IT, FMCS 11

POSIX threads (POSIX threads (PThreadsPThreads))
 Threads used to implement parallelism in shared

memory multiprocessor systems, such as SMPs

 Historically, hardware vendors have implemented
their own proprietary versions of threads
– Portability a concern for software developers.– Portability a concern for software developers.

 For UNIX systems, a standardized C language
threads programming interface has been
specified by the IEEE POSIX 1003.1c standard.
– Implementations that adhere to this standard are

referred to as POSIX threads

Dr. Muhammad Asim, ICS/IT, FMCS 12

The POSIX Thread API The POSIX Thread API
 Commonly referred to as PThreads, POSIX has

emerged as the standard threads API, supported
by most vendors.
– Implemented with a pthread.h header/include file and

a thread library

 Functionalities Functionalities
– Thread management, e.g. creation and joining
– Thread synchronization primitives

 Mutex
 Condition variables
 •Reader/writer locks

– Thread-specific data

Dr. Muhammad Asim, ICS/IT, FMCS 13

PThreadPThread APIAPI
 #include <pthread.h>

 gcc -Ipthread

Dr. Muhammad Asim, ICS/IT, FMCS 14

Thread CreationThread Creation
 Initially, main() program comprises a single, default thread

– All other threads must be explicitly created

int pthread_create(
pthread_t *thread,
const pthread_attr_t *attr,
void *(*start_routine)(void *),
void * arg);

• thread: An opaque, unique identifier for the new thread returned by the subroutine
• attr: An opaque attribute object that may be used to set thread attributes You can specify a

thread attributes object, or NULL for the default values
• start_routine: the C routine that the thread will execute once it is created
• arg: A single argument that may be passed to start_routine. It must be passed by reference as a

pointer cast of type void. NULL may be used if no argument is to be passed.

Opaque object: A letter is an opaque object to the mailman, and sender and receiver know the
information.

Dr. Muhammad Asim, ICS/IT, FMCS 15

Thread CreationThread Creation
 • pthread_create creates a new thread and makes it executable, i.e. run

immediately in theory

– can be called any number of times from anywhere within your code

 Once created, threads are peers, and may create other threads

 There is no implied hierarchy or dependency between threads

Dr. Muhammad Asim, ICS/IT, FMCS 16

Terminating ThreadsTerminating Threads
 pthread_exit is used to explicitly exit a thread

– Called after a thread has completed its work and is no
longer required to exist

 If main()finishes before the threads it has created
– If exits with pthread_exit(), the other threads will continue

to execute
– Otherwise, they will be automatically terminated when– Otherwise, they will be automatically terminated when

main()finishes
 The programmer may optionally specify a termination

status, which is stored as a void pointer for any thread
that may join the calling thread

 Cleanup: the pthread_exit()routine does not close files
– Any files opened inside the thread will remain open after

the thread is terminated

Dr. Muhammad Asim, ICS/IT, FMCS 17

Thread AttributeThread Attribute
int pthread_create(

pthread_t *thread,
const pthread_attr_t *attr,

void *(*start_routine)(void *),
void * arg);

 Attribute contains details about
– whether scheduling policy is inherited or explicit– whether scheduling policy is inherited or explicit
– scheduling policy, scheduling priority
– stack size, stack guard region size

 pthread_attr_init and pthread_attr_destroy are used to
initialize/destroy the thread attribute object

 Other routines are then used to query/set specific attributes in
the thread attribute object

Dr. Muhammad Asim, ICS/IT, FMCS 18

Passing Arguments to ThreadsPassing Arguments to Threads
 The pthread_create() routine permits the programmer to

pass one argument to the thread start routine

 For cases where multiple arguments must be passed:
– Create a structure which contains all of the arguments
– Then pass a pointer to the object of that structure in the

pthread_create()routine.pthread_create()routine.
– All arguments must be passed by reference and cast to (void *)

 Make sure that all passed data is thread safe: data racing
– it can not be changed by other threads
– It can be changed in a determinant way

• Thread coordination

Dr. Muhammad Asim, ICS/IT, FMCS 19

Shared Memory and ThreadsShared Memory and Threads
 All threads have access to the same global, shared memory

 Threads also have their own private data

 Programmers are responsible for synchronizing access
(protecting) globally shared data.

Dr. Muhammad Asim, ICS/IT, FMCS 20

Thread ConsequencesThread Consequences
 • Shared State!

– Accidental changes to global variables can be fatal.
– Changes made by one thread to shared system resources

(such as closing a file) will be seen by all other threads
– Two pointers having the same value point to the same data
– Reading and writing to the same memory locations is

possiblepossible
– Therefore requires explicit synchronization by the

programmer
 Many library functions are not thread-safe

– Library Functions that return pointers to static internal
memory. E.g. gethostbyname()

 Lack of robustness
– Crash in one thread will crash the entire process

Dr. Muhammad Asim, ICS/IT, FMCS 21

ThreadThread--safenesssafeness
 Thread-safeness: in a nutshell, refers an

application's ability to execute multiple threads
simultaneously without "clobbering" shared data
or creating "race" conditions

 Example: an application creates several threads,
each of which makes a call to the same library
routine:routine:
– This library routine accesses/modifies a global

structure or location in memory.
– As each thread calls this routine it is possible that they

may try to modify this global structure/memory
location at the same time.

– If the routine does not employ some sort of
synchronization constructs to prevent data corruption,
then it is not threadsafe.

Dr. Muhammad Asim, ICS/IT, FMCS 22

Why Why PThreadsPThreads (not processes)?(not processes)?
 The primary motivation

– To realize potential program performance gains

 Compared to the cost of creating and managing a process
– A thread can be created with much less OS overhead

 Managing threads requires fewer system resources than Managing threads requires fewer system resources than
managing processes

 All threads within a process share the same address space

 Inter-thread communication is more efficient and, in many
cases, easier to use than inter-process communication

Dr. Muhammad Asim, ICS/IT, FMCS 23

