
Lecture 7

Concurrency and Synchronization

Institute of Computer Science & Information Technology,
Faculty of Management & Computer Sciences,

The University of Agriculture, Peshawar, Pakistan.



Concurrency and Synchronization

 Concurrency is the tendency for things to
happen at the same time in any system.

 Concurrency is a natural phenomena, of
course.

 In the real world, at any given time, many
things are happening simultaneously.

Dr. Muhammad Asim, ICS/IT, FMCS 2



Concurrency (1)

 When dealing with currency issues in
software systems, there are generally two
aspects that are important:

1. Being able to detect and respond to
external events occurring in a random order,
and

2. Ensuring that these events are responded to
in some minimum required interval.

Dr. Muhammad Asim, ICS/IT, FMCS 3



Challenges in Concurrency
 The challenges of designing concurrent systems arise

mostly because of the interaction which happen
between concurrent activities.

 In concurrent activities, some sort of coordination is
required.

 This coordination also known as synchronization.

Basic synchronization primitives
 Mutual exclusion: Locks, Mutex, Semaphores, ..
 Conditions: Flags, Condition Variable, Signal,

Dr. Muhammad Asim, ICS/IT, FMCS 4



Mutual Exclusion
 Mutual exclusion is a property of concurrency

control, which is introduced for the purpose
of preventing race conditions.

 It is the requirement that one thread of
execution never enters a critical section while
a concurrent thread of execution is already
accessing critical section.

Dr. Muhammad Asim, ICS/IT, FMCS 5



Mutual Exclusion(1)
 Race condition is an undesirable event that

can happen when multiple entities access or
modify share resources in a system.

 The system behaves correctly when these
entities use the shared resources as expected.

 When race condition happens, the system
may enter a stated not designed for and
hence fail.

Dr. Muhammad Asim, ICS/IT, FMCS 6



Mutual Exclusion (2)
 A lock or Mutual Exclusion(Mutex) is a

synchronization primitive: is a mechanism that
enforces limits on accessing a resource when
there are many threads of execution.

 The first person to propose such primitive
was Edsger Dijkstra, who suggested a new
data type called a semaphore.

Dr. Muhammad Asim, ICS/IT, FMCS 7



Semaphore
 A semaphore is an integer variable that

supports a set operation.

 A semaphore is an integer variable used to
control access to a common resource by
multiple threads and avoid critical section
problems.

 A trivial semaphore is a variable that is
changed (e.g., incremented or decremented,
or toggled) depending on conditions.

Dr. Muhammad Asim, ICS/IT, FMCS 8



Semaphore (1)

 More specifically, if a S is a variable of type
semaphore, then two atomic operations are
supported as S: P(S) andV(S)

 The letters P and V come from the Dutch
words passeren, to pass (allow a resource to
thread), and Vrygeven, to release (released a
resource by).

Dr. Muhammad Asim, ICS/IT, FMCS 9



Semaphore (2)
 The operation P(S) achieves the following in 

an atomic manner:
If (S>0)

Decrement S;
Else

Wait for S to become positive

Dr. Muhammad Asim, ICS/IT, FMCS 10



Semaphore (3)

 The operation V(S) is defined as follows:

If (threads waiting for S)
Assign one of them;

Else
Increment S;

Dr. Muhammad Asim, ICS/IT, FMCS 11



Semaphore (4)
 Using semaphores, we can now easily

program mutual exclusion to critical sections
as follows:

Dr. Muhammad Asim, ICS/IT, FMCS 12

Thread 1
----
P(S);
// Enter Critical Section
…..
// Leave Critical Section
V(S);
 …

Thread 2
----
P(S);
// Enter Critical Section
…..
// Leave Critical Section
V(S);



Data and Work Partitioning

Dr. Muhammad Asim, ICS/IT, FMCS 13



Decomposition (Partitioning)
 One of the fundamental steps that we need to

undertake to solve a problem is to split the
computations to be performed into a set of tasks
for concurrent execution defined by the task-
dependency graph.

 Decomposition techniques are broadly classified
as:

1. Recursive Decomposition
2. Data Decomposition
3. Exploratory Decomposition
4. Speculative Decomposition

Dr. Muhammad Asim, ICS/IT, FMCS 14



Recursive Decomposition

 The recursive and data decomposition
techniques are relatively general purpose as
they can be used to decompose a wide
variety of problems.

 On the other hand, speculative and
exploratory decomposition techniques are
more of a special purpose nature because
they apply to specific classes of problems.

Dr. Muhammad Asim, ICS/IT, FMCS 15



Recursive Decomposition
 Recursive decomposition is a method for inducing 

concurrency in problems that can be solved using the 
divide-and-conquer strategy.

 In this technique, a problem is solved by first dividing it 
into a set of independent sub-problems.

 Each one of these sub-problems is solved by 
recursively applying a similar division into sub-
problems followed by a combination of their results.

 The divide-and-conquer strategy results in natural 
concurrency, as different sub-problems can be solved 
concurrently.

Dr. Muhammad Asim, ICS/IT, FMCS 16



Quick Sort
 Consider the sorting a sequence A of n

elements using quick sort algorithm.

 Quicksort is a divide and conquer algorithm
that starts by selecting a pivot element x and
then partitions the sequence A into two
subsequences A0 and A1 such that all the
elements in A0 are smaller than x and all the
elements in A1 are greater than or equal to x.

Dr. Muhammad Asim, ICS/IT, FMCS 17



Quick Sort(1)

 This partitioning step forms the divide step of
the algorithm.

 Each one of the subsequences A0 and A1 is sorted
by recursively calling quicksort.

 Each one of these recursive calls further
partitions the sequences.

 This is illustrated in following Figure for a
sequence of 12 numbers.

Dr. Muhammad Asim, ICS/IT, FMCS 18



QuickSort(2)

Dr. Muhammad Asim, ICS/IT, FMCS 19



QuickSort(3)

 The recursion terminates when each
subsequence contains only a single element.

 Then the results will be combined to form a
sorted list.

Dr. Muhammad Asim, ICS/IT, FMCS 20



Data Decomposition
 Data decomposition is a powerful and commonly used

method for deriving concurrency in algorithms that
operate on large data structures.

 In this method, the decomposition of computations is
done in two steps:

1. In the first step, the data on which the computations
are performed is partitioned, and

2. In the second step, this data partitioning is used to
induce a partitioning of the computations into tasks.

Dr. Muhammad Asim, ICS/IT, FMCS 21



Data Decomposition (1)

 The operations that these tasks perform on
different data partitions are usually similar.

 The partitioning of data can be performed in
many possible ways.

 But we are going to discuss matrix-
multiplication.

Dr. Muhammad Asim, ICS/IT, FMCS 22



Matrix Multiplication

 To multiply a matrix by another matrix we
need to do “dot product” of rows and
columns..What does that mean?

 Let see with example: 1st Row x 1st Column:
 (1,2,3)*(7,9,11) = 1x7+2x9+3x11=58
 (1,2,3)*(8,10,12) = 1x8+2x10+3x12=64

Dr. Muhammad Asim, ICS/IT, FMCS 23



Exploratory Decomposition
 Exploratory decomposition is used to

decompose problems whose underlying
computations correspond to a searching of a
solution from search space.

 In exploratory decomposition, we partition
the search space into smaller parts, and
search each one of these parts concurrently,
until the desired solution are found.

Dr. Muhammad Asim, ICS/IT, FMCS 24



Speculative Decomposition
 Speculative Decomposition is used when a

program may take one of many possible
computationally significant branches
depending on the output of other
computations.

 In this situation, while one task is performing
the computation whose output is used in
deciding the next computation, other task
can concurrently start the computations.

Dr. Muhammad Asim, ICS/IT, FMCS 25



Speculative Decomposition(1)

 This scenario is similar to evaluating one or 
more of the branches of a switch statement 
in C in parallel before the input for the 
switch is available.

Dr. Muhammad Asim, ICS/IT, FMCS 26


	Lecture 7
	Concurrency and Synchronization
	Concurrency (1)
	Challenges in Concurrency
	Mutual Exclusion
	Mutual Exclusion(1)
	Mutual Exclusion (2)
	Semaphore
	Semaphore (1)
	Semaphore (2)
	Semaphore (3)
	Semaphore (4)
	Data and Work Partitioning
	Decomposition (Partitioning)
	Recursive Decomposition�
	Recursive Decomposition�
	Quick Sort
	Quick Sort(1)
	QuickSort(2)
	QuickSort(3)
	Data Decomposition
	Data Decomposition (1)
	Matrix Multiplication
	Exploratory Decomposition
	Speculative Decomposition
	Speculative Decomposition(1)

