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Concurrency and Synchronization

 Concurrency is the tendency for things to
happen at the same time in any system.

 Concurrency is a natural phenomena, of
course.

 In the real world, at any given time, many
things are happening simultaneously.
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Concurrency (1)

 When dealing with currency issues in
software systems, there are generally two
aspects that are important:

1. Being able to detect and respond to
external events occurring in a random order,
and

2. Ensuring that these events are responded to
in some minimum required interval.
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Challenges in Concurrency
 The challenges of designing concurrent systems arise

mostly because of the interaction which happen
between concurrent activities.

 In concurrent activities, some sort of coordination is
required.

 This coordination also known as synchronization.

Basic synchronization primitives
 Mutual exclusion: Locks, Mutex, Semaphores, ..
 Conditions: Flags, Condition Variable, Signal,
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Mutual Exclusion
 Mutual exclusion is a property of concurrency

control, which is introduced for the purpose
of preventing race conditions.

 It is the requirement that one thread of
execution never enters a critical section while
a concurrent thread of execution is already
accessing critical section.

Dr. Muhammad Asim, ICS/IT, FMCS 5



Mutual Exclusion(1)
 Race condition is an undesirable event that

can happen when multiple entities access or
modify share resources in a system.

 The system behaves correctly when these
entities use the shared resources as expected.

 When race condition happens, the system
may enter a stated not designed for and
hence fail.
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Mutual Exclusion (2)
 A lock or Mutual Exclusion(Mutex) is a

synchronization primitive: is a mechanism that
enforces limits on accessing a resource when
there are many threads of execution.

 The first person to propose such primitive
was Edsger Dijkstra, who suggested a new
data type called a semaphore.
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Semaphore
 A semaphore is an integer variable that

supports a set operation.

 A semaphore is an integer variable used to
control access to a common resource by
multiple threads and avoid critical section
problems.

 A trivial semaphore is a variable that is
changed (e.g., incremented or decremented,
or toggled) depending on conditions.
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Semaphore (1)

 More specifically, if a S is a variable of type
semaphore, then two atomic operations are
supported as S: P(S) andV(S)

 The letters P and V come from the Dutch
words passeren, to pass (allow a resource to
thread), and Vrygeven, to release (released a
resource by).
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Semaphore (2)
 The operation P(S) achieves the following in 

an atomic manner:
If (S>0)

Decrement S;
Else

Wait for S to become positive
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Semaphore (3)

 The operation V(S) is defined as follows:

If (threads waiting for S)
Assign one of them;

Else
Increment S;
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Semaphore (4)
 Using semaphores, we can now easily

program mutual exclusion to critical sections
as follows:
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Thread 1
----
P(S);
// Enter Critical Section
…..
// Leave Critical Section
V(S);
 …

Thread 2
----
P(S);
// Enter Critical Section
…..
// Leave Critical Section
V(S);



Data and Work Partitioning
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Decomposition (Partitioning)
 One of the fundamental steps that we need to

undertake to solve a problem is to split the
computations to be performed into a set of tasks
for concurrent execution defined by the task-
dependency graph.

 Decomposition techniques are broadly classified
as:

1. Recursive Decomposition
2. Data Decomposition
3. Exploratory Decomposition
4. Speculative Decomposition
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Recursive Decomposition

 The recursive and data decomposition
techniques are relatively general purpose as
they can be used to decompose a wide
variety of problems.

 On the other hand, speculative and
exploratory decomposition techniques are
more of a special purpose nature because
they apply to specific classes of problems.
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Recursive Decomposition
 Recursive decomposition is a method for inducing 

concurrency in problems that can be solved using the 
divide-and-conquer strategy.

 In this technique, a problem is solved by first dividing it 
into a set of independent sub-problems.

 Each one of these sub-problems is solved by 
recursively applying a similar division into sub-
problems followed by a combination of their results.

 The divide-and-conquer strategy results in natural 
concurrency, as different sub-problems can be solved 
concurrently.
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Quick Sort
 Consider the sorting a sequence A of n

elements using quick sort algorithm.

 Quicksort is a divide and conquer algorithm
that starts by selecting a pivot element x and
then partitions the sequence A into two
subsequences A0 and A1 such that all the
elements in A0 are smaller than x and all the
elements in A1 are greater than or equal to x.
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Quick Sort(1)

 This partitioning step forms the divide step of
the algorithm.

 Each one of the subsequences A0 and A1 is sorted
by recursively calling quicksort.

 Each one of these recursive calls further
partitions the sequences.

 This is illustrated in following Figure for a
sequence of 12 numbers.
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QuickSort(2)
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QuickSort(3)

 The recursion terminates when each
subsequence contains only a single element.

 Then the results will be combined to form a
sorted list.
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Data Decomposition
 Data decomposition is a powerful and commonly used

method for deriving concurrency in algorithms that
operate on large data structures.

 In this method, the decomposition of computations is
done in two steps:

1. In the first step, the data on which the computations
are performed is partitioned, and

2. In the second step, this data partitioning is used to
induce a partitioning of the computations into tasks.
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Data Decomposition (1)

 The operations that these tasks perform on
different data partitions are usually similar.

 The partitioning of data can be performed in
many possible ways.

 But we are going to discuss matrix-
multiplication.
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Matrix Multiplication

 To multiply a matrix by another matrix we
need to do “dot product” of rows and
columns..What does that mean?

 Let see with example: 1st Row x 1st Column:
 (1,2,3)*(7,9,11) = 1x7+2x9+3x11=58
 (1,2,3)*(8,10,12) = 1x8+2x10+3x12=64
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Exploratory Decomposition
 Exploratory decomposition is used to

decompose problems whose underlying
computations correspond to a searching of a
solution from search space.

 In exploratory decomposition, we partition
the search space into smaller parts, and
search each one of these parts concurrently,
until the desired solution are found.
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Speculative Decomposition
 Speculative Decomposition is used when a

program may take one of many possible
computationally significant branches
depending on the output of other
computations.

 In this situation, while one task is performing
the computation whose output is used in
deciding the next computation, other task
can concurrently start the computations.
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Speculative Decomposition(1)

 This scenario is similar to evaluating one or 
more of the branches of a switch statement 
in C in parallel before the input for the 
switch is available.
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