
Lecture 4

Software Architecture 

Institute of Computer Science & Information Technology,
Faculty of Management & Computer Sciences,

The University of Agriculture, Peshawar, Pakistan.



Software Architecture

 The architecture of a software system is a
metaphor, analogous to the architecture of a
building.

 Software architecture refers to the
fundamental structures of a software system
and the discipline of creating such structures
and systems

Dr. Muhammad Asim, ICS/IT, FMCS 2



 The architecture of a software system
consists of it structures, the decomposition
into components, and their interfaces and
relationships.

 It describes both the static and dynamic
aspects of the software system, so that it can
be considered a building design and flow chart
for a software product.

Dr. Muhammad Asim, ICS/IT, FMCS 3

Software Architecture (1)



Software Architecture -Views

1. The conceptual view, which identifies entities and
their relationship;

2. The runtime view, the components at system
runtime, e.g., servers, or communication
connections;

3. The process view, which maps processes at system
runtime, while looking at aspects like synchronization
and concurrency;

4. The implementation view, which describes the
systems software artifacts, e.g., subsystems,
components, or source code.

Dr. Muhammad Asim, ICS/IT, FMCS 4



Software Architecture – Web Server as an Example

Dr. Muhammad Asim, ICS/IT, FMCS 5



Process and Thread

 Process: A program is in execution is called
process.

 Thread: is the segment of a process, mean a
process can have multiple threads and these
multiple threads are contained within a
process.

Dr. Muhammad Asim, ICS/IT, FMCS 6



Dr. Muhammad Asim, ICS/IT, FMCS 7



Example

 For example in a word processor, a thread
may check spelling and grammar while
another thread processes user input
(keystrokes), while yet another third thread
loads images from the hard drive, and a fourth
does periodic automatic backup of the file
being edited.

Dr. Muhammad Asim, ICS/IT, FMCS 8



Dr. Muhammad Asim, ICS/IT, FMCS 9



Multithreading

 In computer architecture, multithreading is 
the ability of single CPU to provide multiple 
threads of execution concurrently, supported 
by the operating system.

 Multithreading aims to increase utilization of a 
single core by using thread-level parallelism

Dr. Muhammad Asim, ICS/IT, FMCS 10



Multithreading (1)

 Multithreading allow for multiple request to
be satisfied simultaneously, without having to
service requests sequentially.

Dr. Muhammad Asim, ICS/IT, FMCS 11



Process and Message Passing
 Numerous programming languages(message

passing paradigm) and libraries have been
developed for explicit parallel programming.

 The message passing programming paradigm
is one of the oldest and most widely used
approaches for programming parallel
computers.

Dr. Muhammad Asim, ICS/IT, FMCS 12



Process and Message Passing (1)

 There are two key attributes that
characterize the message-passing
programming paradigm.

 The first is that it assumes a partitioned
address space and the second is that it
supports only explicit parallelization.

Dr. Muhammad Asim, ICS/IT, FMCS 13



Process and Message Passing (2)
 The logical view of a machine supporting the

message-passing paradigm consists of p
processes, each with its own address space.

 Instances of such a view come naturally from
clustered workstations and non-shared
address space multi-computers.

Dr. Muhammad Asim, ICS/IT, FMCS 14



Structure of Message-Passing Programs

 Message-passing programs are often written
using the:

1. Asynchronous paradigm: all the
concurrent tasks execute asynchronously
(no coordination) and

 make it possibly to implement any parallel
algorithm.

 However, such programs can be harder to
understand, and can have non deterministic
behavior due to race conditions.

Dr. Muhammad Asim, ICS/IT, FMCS 15



Structure of Message-Passing Programs (2)

2. Loosely synchronous programs are a good
compromise.

 In such programs, tasks or subsets of tasks
synchronized to perform interactions.

 However, between these interactions, tasks
execute completely asynchronously.

Dr. Muhammad Asim, ICS/IT, FMCS 16



Building Block: Send & Receive Operations
 The interactions are accomplished by sending and 

receiving messages, the basic operations in the 
message-passing programming paradigm are send and 
receive.

 The prototype of these operations are defined as 
follows

 send(void*sendbuf, int nelems, int dest)
 receive(void*recvbuf, int nelems, int source)
 The sendbuf points to a buffer that stores the data to be sent.
 The recvbuf points to buffer that stores the data to be received.
 The dest is the identifier of the process that receives the data.
 The source is the identifier of the process that send the data

Dr. Muhammad Asim, ICS/IT, FMCS 17



Building Block: Send & Receive Opertions (1)

P0
a = 100;
send(&a, 1,1);
a=0;

P1
Receive(&a,1,0)
Printf(“%d\n”,a);

Dr. Muhammad Asim, ICS/IT, FMCS 18

• The important thing to note is that process P0 changes the
value of a to 0 immediately following the send.

•The semantics of the send operation require that the value
received by process P1 must be 100 as opposed to 0.



Building Block: Send & Receive Operations (1)

 Most message passing platforms have additional
hardware support for sending and receiving messages.

1. They may support DMA(Direct Memory Access) and
2. Asynchronous message transfer using network interface

hardware.

 Network interfaces allow the transfer of messages
from buffer memory to desired location without
CPU intervention.

 Similarly, DMA allows copying of data from one
memory location to another(e.g., communication
buffers) without CPU support (once they have been
programmed)

Dr. Muhammad Asim, ICS/IT, FMCS 19



Building Block: Send & Receive Operations (2)

 As a result, if the send operation programs
the communication hardware and returns
before the communication operation has
been accomplished, process P1 receive the
value 0 in a instead of 100.

Dr. Muhammad Asim, ICS/IT, FMCS 20



Blocking Message Passing Operations
 A simple solution to the dilemma presented

in the code fragment above is for the send
operation to return only when it is
semantically safe to do so.

 It simply means that the sending operation
blocks until it can guarantee that the
semantics will not be violated on return
irrespective of what happens in the program
subsequently. There are two mechanism by
which this can be achieved.

Dr. Muhammad Asim, ICS/IT, FMCS 21



Blocking Message Passing Operations (1)

 There are two mechanisms by which this can 
be achieved:

1. Blocking non-buffered send/receive
2. Blocking buffered send/receive

Dr. Muhammad Asim, ICS/IT, FMCS 22



Blocking non-buffered Send/Receive

 In the first case, the send operation does not
return until the matching receive has been
encountered at the receiving process.

 When this happens, the message is sent and
the send operation returns upon completion
of the communication operation.

Dr. Muhammad Asim, ICS/IT, FMCS 23



 Typically, this process involves a handshake
between the sending and receiving processes.
The sending process sends a request to
communicate to the receiving process.

 Since there are no buffers used at either
sending or receiving ends, this is also referred
to as a non-buffered blocking operations.

Dr. Muhammad Asim, ICS/IT, FMCS 24



Dr. Muhammad Asim, ICS/IT, FMCS 25



Blocking non-buffered Send/Receive (1)
 In cases (a) and (c), we notice that there is

considerable idling at the sending and
receiving process.

 It is also clear from the figures that a blocking
non-buffered protocol is suitable when the
send and receive are posted at roughly the
same time.

 However, in an asynchronous environment,
this may be impossible to predict . This idling
overhead is one of the major drawbacks of
this protocol.

Dr. Muhammad Asim, ICS/IT, FMCS 26



Blocking Buffered Send/Receive
 A simple solution to the idling and

deadlocking problem outlined above is to rely
on buffers at the sending and receiving ends.
We start with a simple case in which the
sender has a buffer pre-allocated for
communication messages.

 On encountering a send operations, the
sender simply copies the data into the
designated buffer and returns after the copy
operation has been completed.

Dr. Muhammad Asim, ICS/IT, FMCS 27



Dr. Muhammad Asim, ICS/IT, FMCS 28



Blocking Buffered Send/Receive (1)
 The sender process can now continue with the

program knowing that any changes to the data
will not impact program semantics.

 Note that at the receiving end, the data cannot
be stored directly at the target location since
this would violate program semantics.

 Instead, the data is copied into a buffer at the
receiver as well.

Dr. Muhammad Asim, ICS/IT, FMCS 29


	Lecture 4
	Software Architecture
	Software Architecture (1)
	Software Architecture - Views
	Software Architecture – Web Server as an Example
	Process and Thread
	Slide Number 7
	Example
	Slide Number 9
	Multithreading
	Multithreading (1)
	Process and Message Passing
	Process and Message Passing (1)
	Process and Message Passing (2)
	Structure of Message-Passing Programs
	Structure of Message-Passing Programs (2)
	Building Block: Send & Receive Operations
	Building Block: Send & Receive Opertions (1)
	Building Block: Send & Receive Operations (1)
	Building Block: Send & Receive Operations (2)
	Blocking Message Passing Operations
	Blocking Message Passing Operations (1)
	Blocking non-buffered Send/Receive�
	Slide Number 24
	Slide Number 25
	Blocking non-buffered Send/Receive (1)
	Blocking Buffered Send/Receive
	Slide Number 28
	Blocking Buffered Send/Receive (1)

