Digital Image Processing CS-601, IT-613

Dr. Arbab Waseem Abbas ICS/IT, FMCS, The University of Agriculture, Peshawar.

Lecture 3(week 7 & 8)

Lecture # 3 Basic Concepts in Digital Image Processing

Spatial and gray level resolution

- Resolution refer to the smallest discernible change
- M x N...spatial resolution
- L...gray level resolution

The number of selected values in the sampling process is known as the image spatial resolution. This is simply the number of pixels relative to the given image area. The number of selected values in the quantization process is called the grey-level (color level) resolution. Sampling is the principal factor determining the spatial resolution of an image. ... A widely used definition of resolution is simply the smallest number of discernible line pairs per unit distance; for es 100 line pairs/mm. Gray level resolution: This refers to the smallest discernible change in gray level.

Image Resampling & Interpolation

Need to resample the image when

- Rescaling
- Geometrical transformation
- The output image coordinates are not discrete

Interpolation methods:

- Nearest neighbor
 - Fast and simple
 - Loss of sharpness
 - Artifacts (checkerboard)
- Bilinear
- Bicubic
 - Images are sharpest
 - Fine details are preserved
 - Slow

Zooming and shrinking

- Closest neighbor interpolation
- Pixel replication
- Bilinear interpolation

Image interpolation occurs when you resize or distort your image from one pixel grid to another. Image resizing is necessary when you need to increase or decrease the total number of pixels, whereas remapping can occur when you are correcting for lens distortion or rotating an image

Interpolation is the process of transferring image from one resolution to another without losing image quality. In Image processing field, image interpolation is very important function for doing zooming, enhancement of image, resizing and many more.

Image interpolation is generally achieved through one of three methods: nearest neighbor, bilinear interpolation, or bicubic interpolation.

Closest neighbor interpolation

Nearest neighbour interpolation is the simplest approach to interpolation. Rather than calculate an average value by some weighting criteria or generate an intermediate value based on complicated rules, this method simply determines the "nearest" neighbouring pixel, and assumes the intensity value of it. Nearest neighbor interpolation method is a technique of blind pixel replication

-								
10	4	22	10	10	4	4	22	22
2	18	7	10	10	4	4	22	22
9	14	25	2	2	18	18	7	7
			2	2	18	18	7	7
			9	9	14	14	25	25
angeholu	ww.blowesse		9	9	14	14	25	25

Bilinear interpolation

Bilinear Interpolation : is a resampling method that uses the distance weighted average of the four nearest pixel values to estimate a new pixel value.

Zooming and shrinking

FIGURE 2.19 A 1024 \times 1024, 8-bit image subsampled down to size 32 \times 32 pixels. The number of allowable gray levels was kept at 256.

Zooming by row and column duplication

FIGURE 2.20 (a) 1024×1024 , 8-bit image. (b) 512×512 image resampled into 1024×1024 pixels by row and column duplication. (c) through (f) 256×256 , 128×128 , 64×64 , and 32×32 images resampled into 1024×1024 pixels.

Zooming by nearest neighbor/bilinear interpolation

© 2002 R. C. Gonzalez & R. E. Woods

FIGURE 2.25 Top row: images zoomed from 128×128 , 64×64 , and 32×32 pixels to 1024×1024 pixels, using nearest neighbor gray-level interpolation. Bottom row: same sequence, but using bilinear interpolation.

Effect of reducing gray levels

Note the contours that are appearing in areas of smooth gray levels

Effect of reducing gray levels

The effect is getting more pronounced with the decreasing number of gray levels

Combined effect of resolution/gray levels

a b c

FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a relatively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

© 2002 R. C. Gonzalez & R. E. Woods

Isopreference curves

Pixel neighborhood

- 4-neighbors (N₄)
- Diagonal neighbors
- 8-neighbors

	(x-1 ,y)		
(x,y-1)	(x, y)	(x,y+1)	
	(x+1,y)		

Pixel neighborhood

- 4-neighbors
- Diagonal neighbors (N_D)
- 8-neighbors

(x-1, y-1)		(x-1, y+1)	
	(x, y)		
(x+1, y1)		(x+1, y+1)	

Pixel neighborhood

- 4-neighbors
- Diagonal neighbors
- 8-neighbors (N₈)

(x-1, y-1)	(x-1 ,y)	(x-1, y+1)	
(x,y-1)	(x, y)	(x,y+1)	
(x+1, y-1)	(x+1,y)	(x+1, y+1)	

Connectivity of pixels

• Two pixels are connected if they are neighbors and their gray levels satisfy a specified criterion of similarity

0	1	1	
1	1	0	
0	1	0	

Review of Adjacency

Adjacency is the relationship between two pixels *p* and *q*

V is a set of intensity values used to define adjacency

- Binary image: V={1} or V={0}
- Gray level image: $V \sqsubseteq \{0, 1, ..., 255\}$ $f(p) \in V$ and $f(q) \in V \Longrightarrow$ Intensity constraints

Three types of adjacency:

Mixed (m) adjacency is modification of 8-adjacency. It is introduced to eliminate the ambiguities that often arise when 8-adjacency is used. For example, consider

the pixel arrangement shown in Fig. 2.26(a) for V={1}.The three pixels at the top of Fig. 2.26(b) show multiple (ambiguous) 8adjacency, as indicated by the dashed lines (diagonal and 8). This ambiguity is removed by using madjacency, as shown in Fig. 2.26(c).

Pixel adjacency

- 4-adjacency
- 8-adjacency
- m-adjacency

Two pixels p and q with values from a set V are 4-adjacent if q is in the set N₄(p)

0	1	1	0 11	0	11
0	1	0	0 1 0	0	1 0
0	0	1	0 0 1	0	0 1

a b c

FIGURE 2.26 (a) Arrangement of pixels; (b) pixels that are 8-adjacent (shown dashed) to the center pixel; (c) *m*-adjacency.

```
Two pixels p and q with values from a set V are said to be mixed (m) adjacent if
(1) if q is in the set N_4(p) or
(2)q is in the set N_D(p) and the set N_4(p) \sqcap N_4(q) has no pixels whose values are from V
```

Adjacency of Image subsets

Two image subsets S_1 and S_2 are adjacent if some pixel in S_1 is adjacent to some pixel in S_2

Two image subsets S_1 and S_2 are adjacent if some pixel in S_1 is adjacent to some pixel in S_2 . It is understood here and in the following definitions that *adjacent* means 4-, 8-, or m-adjacent.

Adjacency of Image subsets

Consider the two image subsets, S_1 and S_2 Shown in the following figure.

(1) For V={1,4}, determine whether these two subsets are 4-adjacent, (b) 8-adjacent (c) m-adjacent

(2) Repeat for $V = \{2,7\}$

 \mathbf{S}_1

Some Basic Relationships between Pixels Neighbors of a pixel

Path or curve

the path is a *closed* path

A path from pixel p with coordinates (x,y) to pixel q with coordinates (s, t) is a sequence of distinct pixels with coordinates $(x_0, y_0), (x_1, y_1), (x_2, y_2) \vdash (x_n, y_n)$ where $(x_0, y_0) = (x, y)$ and $(x_n, y_n) = (s, t)$ and $(x_i, y_i), (x_{i-1}, y_{i-1})$ are adjacent for $1 \le i \le n$ Path length n Depending on adjacency the Closed path if? path is a 4, 8, m-path, depending If $(x_0, y_0) = (x_n, y_n)$ on the adjacency

Connectivity

• Path from p to q: a sequence of distinct and adjacent pixels with coordinates

Starting point p
$$(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n)$$

adjacent ending point q

- *Closed* path: if the starting point is the same as the ending point
- p and q are *connected*: if there is a path from p to q in S
- Connected component: all the pixels in S connected to p
- Connected set: S has only one connected component

Are they connected sets?

4-adjacency: No 8-adjacency: Yes m-adjacency: Yes

Regions

- R is a region if R is a connected set
- R_i and R_j are adjacent if $R_i \cup R_j$ is a connected set

Boundaries

- Inner boundary (boundary) -- the set of pixels each of which has at least one background neighbor
- Outer boundary the boundary pixels in the background

Path or curve

• Find the length of shortest 4, 8, m-path between p and q if V={0,1}

3	1	2	1(q)
2	2	0	2
1	2	1	1
1(p)	0	1	2

3 Q 2 1 4 isnot var

9. 9 O AP

Connected component / set

- Two pixels p and q in S (S is a subset of pixels in an image) are connected if there exist a path between them consisting entirely of pixels from S
- For any pixel p in S, the set pixels that are connected to it in S is called a connected component
- If S has one connected component then set S is called connected set

Regions and boundary

- A subset R of an image is called a region if R is a connected set
- A border or boundary of a region R is the set of pixels in the region that have one or more neighbors that are not in R
- The border of a region is a closed path! WHY?^{The boundary of a finite region forms a closed path and is} thus a "global" concept

What if the region R happens to be the whole image???

If *R* happens to be an entire image (which we recall is a rectangular set of pixels), then its boundary is defined as the set of pixels in the first and last rows and columns of the image. This extra definition is required because an image has no neighbors beyond its border

Distance measure

- Euclidean distance
- D₄ distance
- D₈ distance
- D_m distance

$$D_{e}(p,q) = \sqrt{(x-s)^{2} + (y-t)^{2}}$$
$$D_{4}(p,q) = |x-s| + |y-t|$$
$$D_{8}(p,q) = \max(|x-s|, |y-t|)$$

The shortest m-path between two pixels

Distance Measures

For pixels p, q, and z, with coordinates (x,y), (s,t) and (v,w), D is a distance function or metric if

(a)
$$D(p,q) \ge 0$$
 $D(p,q) = 0$ iff $p = q$
(b) $D(p,q) = D(q,p)$, and
(c) $D(p,z) \le D(p,q) + D(q,z)$

Distance Measures

Euclidean distance $D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$ City-block (D4) distance $D_4(p,q) = |x-s| + |y-t|$

Chessboard (D8) distance (Chebyshev distance)

$$D_8(p,q) = \max(|x-s|, |y-t|)$$

Dynamic Range

Dynamic range/contrast ratio:

the ratio of the maximum detectable intensity level (saturation) to the minimum detectable intensity level (noise) I_{max}

I_{min}

Representing Digital Images

(a): f(x,y), x=0, 1, ..., M-1, y=0,1, ..., N-1

x, *y*: spatial coordinates \rightarrow spatial domain

(b): suitable for visualization

(c): processing and algorithm development

x: extend downward (rows)

y: extend to the right (columns)

Number of bits storing the image

$$\overset{\uparrow}{b} = M \times N \times k$$

a b c FIGURE 2.18 (a) Image plotted as a surface. (b) Image displayed as a visual intensity array. (c) Image shown as a 2-D numerical array (0, .5, and 1 represent black, gray, and white, respectively).

Store an Image

TABLE 2.1

Number of storage bits for various values of N and k.

N/k	1(L = 2)	2(L = 4)	3(L = 8)	4(L = 16)	5(L = 32)	6 (<i>L</i> = 64)	7 (L = 128)	8 (L = 256)	For an 8-	bit image of size 512×512, determine its gray-scale and storage
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192	-	
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768	size.	
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072	Solution	+ k - 8 M - N - 512
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288	Solution	K = 0, M = N = 512
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152		Number of grav levels $L = 2^k = 2^8 = 256$
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608		Number of gray levels $L = 2 = 2 = 250$
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432		The grav scale is [0 255]
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728		The gray scale is [0, 255]
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912)	Storage size (b) = $M * N * k = 512 * 512 * 8 = 2,097,152$ bits

Spatial Resolution

Spatial resolution: smallest discernible details

- # of line pairs per unit distance
- # of dots (pixels) per unit distance
 - Printing and publishing
 - In US, dots per inch (dpi)

Newspaper \rightarrow magazines \rightarrow book

Large image size itself does not mean high spatial resolution!

Scene/object size in the image

1280*960

a b c d

FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250 dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for clarity. They are not part of the data.

http://www.shimanodealer.com/fishing_reports.htm

Intensity Resolution

Intensity resolution

- Smallest discernible change in intensity levels
- Using the number of levels of intensities
- False contouring (banding) when k is small undersampling

16

8

4

Isopreference Curves

Basic Set and Logical Operations

• A is a set: A={.} e.g. A={1,...,255} or $A = \{w | w = 1, ..., 255\}$

 $A = \emptyset$ for empty set

- a is an element of $A(a \in A)$ or a isn't an element of $A(a \notin A)$
- A is a subset of B if every element in A also is in B $(A \sqsubseteq B)$
- C is the union of two sets A and B $(C = A \cup B)$
- C is the *intersection* of A and B $(C = A \cap B)$
- Disjoint or mutual exclusive sets $(A \cap B = \emptyset)$
- Set universe is the set of all elements in an application
- Set difference $(A B = \{w | w \in A, w \notin B\})$

Set Operations Based on Coordinates

A region in an image is represented by a set of coordinates within the region

