Digital Image Processing CS-601, IT-613

Dr. Arbab Waseem Abbas ICS/IT, FMCS, The University of Agriculture, Peshawar.

Lecture 2(week 4, 5 & 6)

Lecture # 2 Basic Concepts in Digital Image Processing, Image acquisition and digital image representation

Now,

Introducing some basic concepts in digital image processing

- **Human vision system**
- **Basics of image acquisition**
- **Image Representation**

Elements of Human Visual Perception

Human visual perception plays a key role in selecting a technique

Lens and Cornea: focusing on the objects

Two receptors in the retina:

- Cones and rods
- Cones located in fovea and are highly sensitive to color
- Rods give a general overall picture of view, are insensitive to color and are sensitive to low level of illumination

Distribution of Rods and Cones in the Retina

Sensitivity of human eye to intensity

Brightness Adaptation: Subjective Brightness

Scotopic:

- **Vision under low illumination**
- **rod cells are dominant**

Photopic:

- **Vision under good illumination**
- **cone cells are dominant**

The total range of distinct intensity levels the eye can discriminate *simultaneously* **is rather small**

Brightness adaptation level

FIGURE 2.4

Range of subjective brightness sensations showing a particular adaptation level.

Subjective brightness is a logarithmic function of the light intensity incident on the eye

Brightness adaptation: For a given set of conditions, the current sensitivity level of the visual system is called brightness adaptation level

Log of intensity $(mL) \rightarrow$ **Lambert**

Brightness Discrimination

Weber ratio

Brightness Discrimination at Different Intensity Levels

cone

Perceived Intensity is Not a Simple Function of the Actual Intensity (1)

(a) An example showing that perceived brightness is not a simple function of intensity. The relative vertical positions between the two profiles in (b) have no special significance; they were chosen for clarity.

FIGURE 2.7 Illustration of the Mach band effect. Perceived intensity is not a simple function of actual intensity.

> Mach bands: The visual system tends to overshoot or undershoot around the boundary regions of different intensities.

Perceived Intensity is Not a Simple Function of the Actual Intensity – Simultaneous Contrast

Simultaneous contrast: a region perceived brightness does not simply depend on its intensity!

a b c

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same intensity, but they appear progressively darker as the background becomes lighter.

Optical Illusions: Complexity of Human Vision

 $\begin{matrix} a & b \\ c & d \end{matrix}$

More Optical Illusions

<http://www.123opticalillusions.com/> <http://brainden.com/optical-illusions.htm>

Object Perception

How do we perceive separate **Scenes** features, objects, scenes, etc. in the environment?

■ Perception of a scene involves multiple levels of perceptual analysis.

What Do We Do With All Of This Visual Information??

"Bottom up processing"

- Data-driven
- Sensation reaches brain, and then brain makes sense of it

"Top down processing"

- Cognitive functions informs our sensation
- E.g., walking to refrigerator in middle of night

Now,

Introducing some basic concepts in digital image processing

- **Human vision system. Why we need to study human eye?**
- **Basics of image acquisition**
	- Geometry size, location, …
	- Appearance color, intensity

Image Formation in the Eye

Image is upside down in the retina/imaging plane!

FIGURE 2.3 Graphical representation of the eye looking at a palm tree. Point C is the optical center of the lens.

Adjust focus length

- **Camera**
- **Human eye**

Light and EM Spectrum

THE ELECTRO MAGNETIC SPECTRUM

<http://www.kollewin.com/blog/electromagnetic-spectrum/>

Relation Among Wavelength, Frequency and Energy

wavelength (λ) , frequency (v) , and energy (E)

$$
\lambda = \frac{c}{v}
$$
, $c = 2.998 \times 10^8$ m/s is the speed of light

 $E = hv$, *h* is the Planck's constant, 6.626068×10⁻³⁴ m² kg / s

Image Sensing and Acquisition

Illumination energy → **digital images**

Incoming energy is transformed into a voltage

 \rm{a}

(b) Line sensor. (c) Array sensor.

Digitizing the response

Definitions

 $0 < f(x, y) < \infty$

Images generated from a physical process,

$$
f(x, y) = i(x, y)r(x, y)
$$

 $0 < i(x, y) < \infty$

 $0 < r(x, y) < 1$

Characterized by two components: illumination and reflectance (transmittance)

Definitions

 $l = f(x_0, y_0)$ $L_{\min} \leq l \leq L_{\max}$ $L_{\min} = i_{\min} r_{\min}$ $L_{\text{max}} = i_{\text{max}} r_{\text{max}}$ $[L_{\min}, L_{\max}]$ $[0, L-1]$

The interval [0, L-1] is called the gray scale. I = 0 for black and L-1 is considered white on gray scale The interval [0, L-1]
called the gray scale
O for black and L-1 is
considered white on
scale

Definitions

- *Radiance* is the total amount of energy that flows from a light source
- *Luminance* is a measure of the amount of energy an observer perceives from a light source
- *Brightness* is a subjective descriptor of light perception

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

Image formation

Image formation

Image formation

Image formation

Image formation

Digital Image Processing, 2nd ed.

www.imageprocessingbook.com

Image formation: Quantization

continuous color input

Digital Image Processing, 2nd ed.

Sampling and quantization

Representation of digital images

Number of bits required to store an $M \times N$ image with 2^k gray levels: $b = M \times N \times k$

Pixels

- A digital image, *I*, is a mapping from a 2D grid of uniformly spaced discrete points, $\{p = (r,c)\}\$, into a set of positive integer values, {*I*(*p*)}, or a set of vector values, *e.g.*, $\{[R \ G \ B]^T(p)\}.$
- At each column location in each row of *I* there is a value.
- The pair (*p*, *I*(*p*)) is called a "pixel" (for *picture element*).

Pixels

- $p = (r,c)$ is the pixel location indexed by row, *r,* and column, *c.*
- $I(p) = I(r,c)$ is the value of the pixel at location *p.*
- If *I*(*p*) is a single number then *I* is monochrome.
- If *I*(*p*) is a vector (ordered list of numbers) then *I* has multiple bands (*e.g.,* a color image).

Pixels

Pixel Location: $p = (r, c)$ Pixel Value: $I(p) = I(r, c)$

$$
\mathsf{Pixel} : [p, I(p)]
$$

Spatial and gray level resolution

- Resolution refer to the smallest discernible change
- M x N...spatial resolution
- L…gray level resolution

A (2D) Image

An **image** = a 2D function $f(x, y)$ where

- *x* and *y* are spatial coordinates
- *f*(*x*,*y*) is the intensity or gray level

An digital image:

- x , y , and $f(x, y)$ are all finite
- For example $x \in \{1,2,..., M\}$, $y \in \{1,2,$

 $f(x, y) \in \{0, 1, 2, \ldots, 255\}$

Digital image processing → **processing digital images by means of a digital computer**

Each element (*x***,***y***) in a digital image is called a pixel (picture element)**

 $\rightarrow \mathbf{X}$

 \vee **V**

o

A Simple Image Formation Model

$$
f(x, y) = i(x, y) \cdot r(x, y)
$$

\n
$$
0 < f(x, y) < \infty
$$
: 'Image (positive and finite)
\n**Source:** $0 < i(x, y) < \infty$: 'Illumination component
\n**Object:** $0 < r(x, y) < 1$: 'Reflectance/transmission component

$$
L_{\min} < f(x, y) < L_{\max} \qquad \text{in practice}
$$
\nwhere $L_{\min} = i_{\min} r_{\min}$ and $L_{\max} = i_{\max} r_{\max}$

i(x,y):

Sunlight: 10,000 lm/m² (cloudy), 90,000lm/m² clear day Office: 1000 lm/m²

Black velvet 0.01; 0.93 snow r(x,y):

Image Sampling and Quantization

a b

FIGURE 2.16 Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

Sampling: Digitizing the coordinate values (usually determined by sensors)

Quantization: Digitizing the amplitude values

Image Sampling and Quantization in a Sensor Array

a b

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image sampling and quantization.