Week # 07

Derivative Of trigonometric Function

Derivative 0f Inverse trigonometric Function

- **Derivative Of Trigonometric Function :-**
	- 1. $\frac{d}{dx}$

$$
2. \ \frac{d}{dx}(cos x) = -sin x
$$

$$
3. \ \frac{d}{dx}(tan x) = sec^2 x
$$

$$
4. \ \ \frac{\mathrm{d}}{\mathrm{d}x}(cot x) = -cose^2 x
$$

- 5. $\frac{d}{dx}$ (
- 6. $\frac{d}{dx}$ (
- **Proof:-**
- 1. Show that $\frac{d}{dx}(\sin x) = \cos x$ by using first principle Rule.

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{2\cos(\frac{x + \Delta x + x}{2}) \cdot \sin(\frac{x + \Delta x - x}{2})}{\Delta x}
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{2\cos(\frac{x + \Delta x + x}{2}) \cdot \sin(\frac{\Delta x}{2})}{\Delta x}
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{2\cos(\frac{2x + \Delta x}{2}) \cdot \sin(\frac{\Delta x}{2})}{\Delta x}
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\cos(\frac{2x + \Delta x}{2}) \cdot \sin(\frac{\Delta x}{2})}{\Delta x/2}
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\cos(x + \frac{\Delta x}{2}) \cdot \sin(\frac{\Delta x}{2})}{\Delta x/2}
$$
\n
$$
\frac{dy}{dx} = \cos(x + \frac{\Delta x}{2}) \cdot \lim_{\Delta x \to 0} \frac{\sin(\frac{\Delta x}{2})}{\Delta x/2} \qquad \lim_{\Delta x \to 0} \frac{\sin(\frac{\Delta x}{2})}{\Delta x/2} = 1
$$
\n
$$
\frac{dy}{dx} = \cos(x + \frac{\Delta x}{2}) \cdot 1
$$
\nApply the limit\n
$$
\frac{dy}{dx} = \cos(x + \frac{\Delta x}{2})
$$
\n
$$
\frac{dy}{dx} = \cos(x + 0)
$$
\n
$$
\frac{dy}{dx} = \cos(x + 0)
$$
\n
$$
\frac{dy}{dx} = \cos(x + 0)
$$
\n
$$
\frac{dy}{dx} = \cos x \text{ Proved.}
$$
\n2. Show that $\frac{d}{dx}(\cos x) = -\sin x$ by using first principle Rule.

Sol:

\nLet
$$
f(x) = \cos x
$$
 \longrightarrow (i)

\nLet $f(x + \Delta x) = \cos x + \Delta x$ \longrightarrow (ii)

\n $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$ \longrightarrow (iii)

\nPut \longrightarrow (i) and \longrightarrow (ii) in \longrightarrow (iii)

\n $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\cos x + \Delta x - \cos x}{\Delta x}$

\n $\therefore A = x + \Delta x, B = x$

\n $\therefore A = x + \Delta x, B = x$

\n4. $\cos A - \cos B = -2\sin \frac{A + B}{2} \cdot \sin \frac{A - B}{2}$

\n5. $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{-2\sin(\frac{x + \Delta x + x}{2}) \cdot \sin(\frac{x + \Delta x - x}{2})}{\Delta x}$

\n $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{-2\sin(\frac{x + \Delta x + x}{2}) \cdot \sin(\frac{\Delta x}{2})}{\Delta x}$

\n $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{-2\sin(\frac{2x + \Delta x}{2}) \cdot \sin(\frac{\Delta x}{2})}{\Delta x/2}$

\n $\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{-\sin(x + \frac{\Delta x}{2}) \cdot \sin(\frac{\Delta x}{2})}{\Delta x/2}$

\n $\frac{dy}{dx} = -\sin(x + \frac{\Delta x}{2}) \cdot \lim_{\Delta x \to 0} \frac{\sin(\frac{\Delta x}{2})}{\Delta x/2}$ $\frac{\sin(\frac{\Delta x}{2})}{\Delta x \to 0} = 1$

$$
\frac{dy}{dx} = -\sin\left(x + \frac{\Delta x}{2}\right).1
$$

Apply the Limit

$$
\frac{dy}{dx} = -\sin(x + \frac{0}{2})
$$

$$
\frac{dy}{dx} = -\sin\left(x + 0\right)
$$

 \boldsymbol{d} \overline{d}

3. Show that $\frac{d}{dx}(tan x) = sec^2 x$ by using first principle Rule.

$$
Sol: -
$$
\n
$$
Let f(x) = \tan x
$$
\n
$$
Let f(x + \Delta x) = \tan x + \Delta x
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
$$
\n(iii)\n
$$
Put \longrightarrow (i) \text{ and } \longrightarrow (ii) \text{ in } \longrightarrow (iii)
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\tan (x + \Delta x) - \tan x}{\Delta x}
$$
\n
$$
\therefore \alpha = x + \Delta x, \beta = x
$$
\n
$$
\therefore \alpha = x + \Delta x, \beta = x
$$
\n
$$
\tan x = \frac{\sin x}{\cos x}
$$
\n
$$
\frac{1}{\Delta x} = \lim_{\Delta x \to 0} \frac{x + \Delta x}{\Delta x} - \frac{\sin x}{\Delta x}
$$
\n
$$
\tan x = \frac{\sin x}{\cos x}
$$

4. Show that $\frac{d}{dx}(secx) = secx$. tanx by using first Principle Rule.

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\sec(x + \Delta x) - \sec x}{\Delta x}
$$
\n
$$
\therefore \alpha = x + \Delta x, \beta = x
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\frac{1}{\cos(x + \Delta x)} - \frac{1}{\cos x}}{\Delta x}
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{1}{\cos(x + \Delta x)} - \frac{1}{\cos x} \right]
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{\cos x - \cos(x + \Delta x)}{\cos x \cdot \cos(x + \Delta x)} \right]
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{\cos x - \cos(x + \Delta x)}{\cos x \cdot \cos(x + \Delta x)} \right]
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{\cos x - \cos(x + \Delta x)}{\cos x \cdot \cos(x + \Delta x)} \right]
$$
\n7. $\cos A - \cos B = -2\sin \frac{(A+B)}{2}, \sin \frac{(A-B)}{2}$ \n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{-2\sin \frac{x + (x + \Delta x)}{2}, \sin \frac{x - (x + \Delta x)}{2}}{\cos x \cdot \cos(x + \Delta x)} \right]
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left| \frac{-2 \sin \frac{\cancel{2}x}{\cancel{2}} + \frac{\Delta x}{2} \cdot \sin \frac{\cancel{2}x - \cancel{2}x}{2}}{\cos x \cdot \cos(x + \Delta x)} \right|
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{-2 \sin x + \frac{\Delta x}{2} \cdot -\sin \frac{\Delta x}{2}}{\cos x \cdot \cos(x + \Delta x)} \right]
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{2 \sin x + \frac{\Delta x}{2} \sin x}{\cos x \cdot \cos(x + \Delta x)} \right]
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{2 \sin x + \frac{\Delta x}{2} \cdot \sin \frac{\Delta x}{2}}{\cos x \cdot \cos(x + \Delta x)} \right]
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \sin \left[x + \frac{\Delta x}{2} \right] \cdot \frac{1}{\cos x} \cdot \frac{1}{\cos x + \Delta x} \cdot \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}}
$$

Apply the Limit

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \sin \left[x + \frac{\Delta x}{2} \right] \cdot \lim_{\Delta x \to 0} \frac{1}{\cos x} \cdot \lim_{\Delta x \to 0} \frac{1}{\cos x + \Delta x} \cdot \lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}}
$$

$$
\frac{dy}{dx} = \sin\left[x + \frac{0}{2}\right] \cdot \frac{1}{\cos x} \cdot \frac{1}{\cos x + 0} \cdot 1
$$
\n
$$
\therefore \lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} = 1
$$

$$
\frac{dy}{dx} = \sin x \cdot \frac{1}{\cos x} \cdot \frac{1}{\cos x}
$$

$$
\frac{dy}{dx} = \frac{\sin x}{\cos x} \cdot \frac{1}{\cos x} \qquad \therefore \qquad \frac{1}{\cos x} = \sec x \qquad \therefore \qquad \frac{\sin x}{\cos x} = \tan x
$$
\n
$$
\frac{dy}{dx} = \tan x. \sec x \text{ Proved}
$$

5. Show that $\frac{d}{dx}(cosecx) = -cosecx. \cot x$ by using first Principle Rule.

Sol:

\nLet
$$
f(x) = \csc x
$$
 \longrightarrow (i)

\nLet $f(x + \Delta x) = \csc x + \Delta x$ (ii)

\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
$$
 (iii)\nPut \longrightarrow (i) and \longrightarrow (ii) in

\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\csc x (x + \Delta x) - \csc x x}{\Delta x}
$$
\n
$$
\therefore \alpha = x + \Delta x, \beta = x
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x}
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{1}{\sin(x + \Delta x)} - \frac{1}{\sin x} \right]
$$
\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{\sin x - \sin(x + \Delta x)}{\sin x \cdot \sin(x + \Delta x)} \right]
$$
\n
$$
\frac{8. \sin A - \sin B = 2 \cos \frac{(A + B)}{2} \cdot \sin \frac{(A - B)}{2}}{\cos \frac{(A + B)}{2} \cdot \sin \frac{(A - B)}{2}}
$$
\n
$$
9. \cos A - \cos B = -2 \sin \frac{(A + B)}{2} \cdot \sin \frac{(A - B)}{2}
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{2\cos\frac{x + (x + \Delta x)}{2} \cdot \sin\frac{x - (x + \Delta x)}{2}}{\sin x \cdot \sin(x + \Delta x)} \right]
$$

$$
\left|\frac{2\cos\frac{\cancel{2}x}{\cancel{2}} + \frac{\Delta x}{2} \cdot \sin\frac{\cancel{2}x}{\cancel{2}} - \frac{\Delta x}{2}}{\sin x . \sin(x + \Delta x)}\right|
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{2 \cos x + \frac{\Delta x}{2} \cdot \sin \frac{-\Delta x}{2}}{\sin x \cdot \sin(x + \Delta x)} \right]
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{-2\cos x + \frac{\Delta x}{2} \cdot \sin \frac{\Delta x}{2}}{\sin x \cdot \sin(x + \Delta x)} \right]
$$

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} -\cos\left[x + \frac{\Delta x}{2}\right] \cdot \frac{1}{\sin x} \cdot \frac{1}{\sin x + \Delta x} \cdot \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}
$$
 Apply the Limit

$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} -\cos\left[x + \frac{\Delta x}{2}\right] \cdot \lim_{\Delta x \to 0} \frac{1}{\sin x} \cdot \lim_{\Delta x \to 0} \frac{1}{\sin x + \Delta x} \cdot \lim_{\Delta x \to 0} \frac{\sin\frac{\Delta x}{2}}{\frac{\Delta x}{2}}
$$

$$
\frac{dy}{dx} = -\cos\left[x + \frac{0}{2}\right] \cdot \frac{1}{\sin x} \cdot \frac{1}{\sin x + 0} \cdot 1 \qquad \qquad \lim_{\Delta x \to 0} \frac{\sin \frac{\Delta x}{2}}{\frac{\Delta x}{2}} = 1
$$

$$
\frac{dy}{dx} = -\cos x \cdot \frac{1}{\sin x} \cdot \frac{1}{\sin x}
$$
\n
$$
\frac{dy}{dx} = \frac{-\cos x}{\sin x} \cdot \frac{1}{\sin x} \qquad \qquad \frac{1}{\sin x} = \csc x \qquad \frac{\cos x}{\sin x} = \cot x
$$
\n
$$
\frac{dy}{dx} = -\cot x \cdot \csc x \text{ Proved}
$$
\n6. Show that $\frac{d}{dx}(\cot x) = -\csc^2 x$ by using first principle Rule.\n
$$
Sol: -
$$
\nLet $f(x) = \cot x$ \n
$$
Let $f(x + \Delta x) = \cot x + \Delta x$ \n(ii)\n
$$
\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}
$$
\n(iii)\nPut \longrightarrow (i) and \longrightarrow (ii) in \longrightarrow (iii)\n
$$
Put \longrightarrow
$$
 (i) and \longrightarrow (ii) in \longrightarrow (iii)\n
$$
Put \longrightarrow
$$
 (i) and \longrightarrow (iii)\n
$$
Put \longrightarrow
$$
 (i) and \longrightarrow (ii) in \longrightarrow (iii)\n
$$
10. \sin((\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \alpha \cdot \cos \alpha \cdot \sin \alpha \cdot \cos \alpha \cdot \sin \
$$
$$

$$
\lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{\sin x - (x + \Delta x)}{\sin(x + \Delta x) \cdot \sin x} \right]
$$
\n
$$
\lim_{\Delta x \to 0} \frac{1}{\Delta x} \left[\frac{\sin x - (x + \Delta x)}{\sin(x + \Delta x) \cdot \sin x} \right] \qquad \therefore \sin - \Delta x = -\sin \Delta x
$$
\n
$$
\lim_{\Delta x \to 0} \frac{-\sin \Delta x}{\Delta x} \cdot \lim_{\Delta x \to 0} \frac{1}{\sin(x + \Delta x) \cdot \sin x} \qquad \text{Apply the Limit}
$$
\n
$$
=>-1 \cdot \frac{1}{\sin(x + 0) \cdot \sin x}
$$
\n
$$
= \frac{1}{-\sin x \cdot \sin x}
$$
\n
$$
= \frac{1}{-\sin^2 x}
$$
\n
$$
\frac{dy}{dx} = -\csc^2 x \text{ Proved.}
$$
\n

QuestionS:	1
------------	---

- 1. Use any suitable rule of differentiation to perform $\frac{dy}{dx}$ for the following functions.
	- a. $y = sin^3x$ b. $y = \sin 3x + \tan 4x$ $Sol:$ $Sol:$ $y = sin^3x$ $y = \sin 3x + \tan 4x$ Differentiate $w - r - t$ 'x' Differentiate $w - r - t$ 'x'

$$
\frac{d}{dx}(y) = \frac{dy}{dx} (sin^3 x)
$$

\nUsing Power Rule
\n
$$
\frac{dy}{dx} = 3sin^3-1x \frac{dy}{dx} sin
$$

\n
$$
\frac{dy}{dx} = 3sin^2 \cdot cos x \text{ Ans.}
$$

\n
$$
\frac{dy}{dx} = 3sin^2 \cdot cos x \text{ Ans.}
$$

\n
$$
Soi: -
$$

\n
$$
y = sin x \cdot cos x
$$

\nDifferentiate $w - r - t^2 x^2$
\n
$$
\frac{d}{dx}(y) = \frac{d}{dx} (sin x \cdot cos x)
$$

\nUsing Product Rule
\n
$$
\frac{dy}{dx} = sin x \frac{d}{dx} \cdot cos x + cos x \frac{d}{dx} sin x
$$

\n
$$
\frac{dy}{dx} = sin x \cdot (-sin x) + cos x (cos x)
$$

\n
$$
\frac{dy}{dx} = -sin^2 x + cos^2 x
$$

\n
$$
\frac{dy}{dx} = -sin^2 x + cos^2 x \text{ Ans.}
$$

\n
$$
e. y = x^2 \cdot tan \frac{x}{2}
$$

\n
$$
Soi: -
$$

$$
y = x^2 \cdot \tan \frac{x}{2}
$$

Differentiate $w - r - t$ 'x'

 $\frac{d}{dx}(y) = \frac{d}{dx}$ d $\frac{a}{dx}$ (\boldsymbol{d} $\frac{dy}{dx} = \frac{d}{dx}$ $\frac{d}{dx}$ sin 3x + $\frac{d}{dy}$ $\frac{u}{dx}t$ \boldsymbol{d} $\frac{dy}{dx} = \cos(3x) \frac{d}{dx}$ $\frac{d}{dx}$ 3x + sec²(4x) $\frac{d}{dy}$ $\frac{u}{dx}$ 4 \boldsymbol{d} $\frac{dy}{dx} = 3\cos(3x) + 4\sec^2(3x)$ \boldsymbol{d} $\frac{dy}{dx} =$ $Sol:$ 1 $\overline{\mathbf{c}}$ Differentiate $w - r - t$ 'x' $\frac{d}{dx}$ (sec $x^{\frac{1}{2}}$ $\frac{d}{dx}(y) = \frac{d}{dy}$ \boldsymbol{d} 2 Using Power Rule $\frac{d}{dx}$ (sec $x^{\frac{1}{2}}$ \boldsymbol{d} $\frac{dy}{dx} = \frac{d}{dx}$ $\overline{\mathbf{c}}$ $\mathbf{1}$ $\frac{dy}{dx}$ = sec \sqrt{x} . tan $\sqrt{x} \frac{d}{dx}$ \boldsymbol{d} 2 \boldsymbol{d} $\frac{1}{2}x^{\frac{1}{2}}$ $\frac{dy}{dx} = \sec \sqrt{x}$. $\tan \sqrt{x}$. $\frac{1}{2}$ \boldsymbol{d} $\frac{1}{2}$ $\frac{1}{2}x^{\frac{1}{2}}$ $\frac{dy}{dx} = \sec \sqrt{x}$. $\tan \sqrt{x}$. $\frac{1}{2}$ d $\overline{\mathbf{c}}$ $\frac{1}{2}x^{\frac{-}{2}}$ $\frac{dy}{dx} = \sec \sqrt{x}$. $\tan \sqrt{x}$. $\frac{1}{2}$ \boldsymbol{d} 2 $\frac{dy}{dx}$ = sec \sqrt{x} . tan \sqrt{x} . $\frac{1}{2x}$ \boldsymbol{d} $\frac{1}{2x^2}$ \overline{c} \boldsymbol{d} $\frac{dy}{dx} = \frac{s}{x}$

 $rac{1}{2\sqrt{x}}$ A

$$
\frac{d}{dx}(y) = \frac{d}{dx}(x^2 \cdot \tan{\frac{x}{2}})
$$
\n
$$
\frac{dy}{dx} = x^2 \cdot \frac{d}{dx}\tan{\frac{x}{2}} + \tan{\frac{x}{2}}\frac{d}{dx}x^2
$$
\n
$$
\frac{dy}{dx} = x^2 \cdot \sec^2{\frac{x}{2}}\frac{d}{dx}(\frac{x}{2}) + \tan{\frac{x}{2}}(2x)
$$
\n
$$
\frac{dy}{dx} = x^2 \sec^2{\frac{x}{2}} \cdot (\frac{1}{2}) + \tan{\frac{x}{2}}(2x)
$$
\n
$$
\frac{dy}{dx} = \frac{x^2}{2}\sec^2{\frac{x}{2}} + 2x \cdot \tan{\frac{x}{2}} \quad \text{Ans.}
$$

f.
$$
y = \frac{(cos^2 3t)}{(1+t^2)}
$$

 $Sol:$

$$
y = \frac{\left(\cos^2 3t\right)}{\left(1 + t^2\right)}
$$

Differentiate $w - r - t$ 't'

$$
\frac{d}{dt}(y) = \frac{d}{dt} \left[\frac{\cos^2 3t}{1 + t^2} \right]
$$

a ba

 Using Quotient Rule J.

$$
\frac{dy}{dt} = \left[\frac{(1+t^2)\frac{d}{dt}(\cos^2 3t) - (\cos^2 3t)\frac{d}{dt}(1+t^2)}{(1+t^2)^2} \right]
$$
\n
$$
\frac{dy}{dt} = \left[\frac{(1+t^2).2(\cos 3t)\frac{d}{dt}(\cos 3t) - (\cos^2 3t)(0+2t)}{(1+t^2)^2} \right]
$$
\n
$$
\frac{dy}{dt} = \left[\frac{(1+t^2).2\cos 3t(-\sin 3t)\frac{d}{dt}(3t) - 2t(\cos^2 3t)}{(1+t^2)^2} \right]
$$
\n
$$
\frac{dy}{dt} = \left[\frac{(1+t^2).2\cos 3t(-\sin 3t)(3) - 2t(\cos^2 3t)}{(1+t^2)^2} \right]
$$

Double Angel Formula 2sintcost = sin2t
\n
$$
\frac{dy}{dt} = \left[\frac{(1+t^2) \cdot -3(2sin 3t \cdot cos 3t) \cdot -2t(cos^2 3t)}{(1+t^2)^2} \right]
$$
\n
$$
\frac{dy}{dt} = \left[\frac{-3(1+t^2) \cdot (sin2(3t)) - 2t(cos^2 3t)}{(1+t^2)^2} \right]
$$
\n
$$
\frac{dy}{dt} = \left[\frac{-3(1+t^2) \cdot (sin 6t) - 2t(cos^2 3t)}{(1+t^2)^2} \right]
$$
\n
$$
\frac{dy}{dt} = \left[\frac{-3(1+t^2) \cdot (sin 6t) - 2t(cos^2 3t)}{(1+t^2)^2} \right] \quad \text{Ans.}
$$

Derivative Of Inverse trigonometric Function:- \bullet

1. $\frac{dy}{dx} \sin^{-1} x = \frac{1}{\sqrt{1-x^2}}$

2.
$$
\frac{dy}{dx} \cos^{-1} x = \frac{-1}{\sqrt{1-x^2}}
$$

3.
$$
\frac{dy}{dx} \tan^{-1} x = \frac{1}{1+x^2}
$$

4.
$$
\frac{dy}{dx} \csc c^{-1} x = \frac{-1}{|x|\sqrt{x^2-1}}
$$

5.
$$
\frac{dy}{dx} \sec c^{-1} x = \frac{1}{|x|\sqrt{x^2-1}}
$$

6.
$$
\frac{dy}{dx} \cot^{-1} x = \frac{-1}{1+x^2}
$$

Proofs:- \bullet

1. Show that
$$
\frac{dy}{dx}
$$
 $\sin^{-1} x = \frac{1}{\sqrt{1-x^2}}$.

$$
Sol:=
$$

\nSuppose $y = \sin^{-1}x$
\n
$$
\sin y = x
$$

\nDifferentiate $w - r - t$ 'x'
\n
$$
\frac{d}{dx}(\sin y) = \frac{d}{dx}(x)
$$

\n
$$
\cos y \frac{dy}{dx} = 1
$$

\n
$$
\frac{dy}{dx} = \frac{1}{\cos y}
$$

\n
$$
= \sin^2 y + \cos^2 y = 1
$$

\n
$$
= \cos^2 y = 1 - \sin^2 y
$$

\nTaking " $\sqrt{\ } \text{ or } \text{ both sides}$
\n
$$
\sqrt{\cos^2 y} = \sqrt{1 - \sin^2 y}
$$

\nTaking " $\sqrt{\ } \text{ or } \text{ both sides}$
\n
$$
\cos y = \sqrt{1 - \sin^2 y}
$$

\nPut in $\frac{dy}{dx} = \frac{1}{\sqrt{1 - \sin^2 y}}$
\n
$$
\frac{dy}{dx} = \frac{1}{\sqrt{1 - \sin^2 y}}
$$

\n
$$
\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}}
$$

\n2. Show that $\frac{dy}{dx} = \cos^{-1} x = \frac{-1}{\sqrt{1 - x^2}}$.

Sol:-
\nSuppose
$$
y = \cos^{-1}x
$$

\n $\cos y = x$
\nDifferentiate $w - r - t$ 'x'
\n $\frac{d}{dx}(\cos y) = \frac{d}{dx}(x)$
\n $-\sin y \frac{dy}{dx} = 1$
\n $\frac{dy}{dx} = \frac{-1}{\sin y}$
\n $= \sin^2 y + \cos^2 y = 1$
\n $= \sin^2 y = 1 - \cos^2 y$
\nTaking " $\sqrt{\ } \text{on both sides}$
\n $\sin y = \sqrt{1 - \cos^2 y}$
\n $\sin y = \sqrt{1 - \cos^2 y}$
\nPut in
\n $\frac{dy}{dx} = \frac{-1}{\sqrt{1 - \cos^2 y}}$
\n $\therefore \cos y = x$
\n $\frac{dy}{dx} = \frac{-1}{\sqrt{1 - x^2}}$
\n3. Show that $\frac{dy}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$.

Sol:-
\nSuppose
$$
y = \tan^{-1}x
$$

\n $\tan y = x$
\nDifferentiate $w - r - t'x'$
\n $\frac{d}{dx}(\tan y) = \frac{d}{dx}(x)$
\n $\sec^2 y \frac{dy}{dx} = 1$
\n $\frac{dy}{dx} = \frac{1}{\sec^2 y}$
\n $\Rightarrow 1 + \tan^2 y = \sec^2 y$
\nPut in $\frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n $\frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n $\frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n9. $1 + \cot^2 y = \csc^2 y$
\n
\n4. Show that $\frac{dy}{dx}$ $\csc^{-1} x = \frac{-1}{|x| \sqrt{x^2 - 1}}$.
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$
\n
\n $\sec^2 y \frac{dy}{dx} = \frac{1}{1 + \tan^2 y}$

Suppose $y = \csc^{-1}x$

 $cosec y = x$ Differentiate $w - r - t$ 'x'

$$
\frac{d}{dx}(\csc y) = \frac{d}{dx}(x)
$$

$$
-cot y. cosec y \frac{dy}{dx} = 1
$$
\n
$$
\frac{dy}{dx} = \frac{-1}{cosec y. cot y}
$$
\n
$$
= 1 + cot^{2}y = cosec^{2}y
$$
\n
$$
= 2 cot^{2}y = cosec^{2}y - 1
$$
\nTaking " $\sqrt{\ }$ " on both sides\n
$$
10. sin^{2}y + cos^{2}y = 1
$$
\n
$$
\sqrt{cot^{2}y} = \sqrt{cosec^{2}y - 1}
$$
\n
$$
cot y = \sqrt{cosec^{2}y - 1}
$$
\nPut in \longrightarrow (i)\n
$$
\frac{dy}{dx} = \frac{-1}{cosec y, \sqrt{cosec^{2}y - 1}}
$$
\n
$$
\frac{dy}{dx} = \frac{-1}{cosec y, \sqrt{cosec^{2}y - 1}}
$$
\n
$$
cosec = x
$$
\n
$$
\frac{dy}{dx} = \frac{-1}{|x|\sqrt{x^{2} - 1}}
$$
\nSoI:-
\nSuppose $y = sec^{-1}x$
\n
$$
sec y = x
$$
\nDifferentiate $w - r - t$ ' x'
\n
$$
\frac{d}{dx} (sec y) = \frac{d}{dx} (x)
$$

sec y. tan y
$$
\frac{dy}{dx} = 1
$$

\n $\frac{dy}{dx} = \frac{1}{\sec y. tan y}$ (i)
\n $\Rightarrow 1 + tan^2y = sec^2y$
\n $\Rightarrow tan^2y = sec^2y - 1$
\nTaking " $\sqrt{\ }^n$ on both sides
\n $\sqrt{\frac{tan^2 y}{\sec^2 y - 1}} = \sqrt{\frac{sec^2 y - 1}{\sec^2 y - 1}}$
\n $\tan y = \sqrt{\sec^2 y - 1}$
\nPut in \longrightarrow (i)
\n $\frac{dy}{dx} = \frac{1}{\sec y \cdot \sqrt{\sec^2 y - 1}}$
\n $\frac{dy}{dx} = \frac{1}{|x| \sqrt{x^2 - 1}}$
\n6. Show that $\frac{dy}{dx}$ $\cot^{-1} x = \frac{-1}{1 + x^2}$.
\nSoi: -
\nSuppose $y = \cot^{-1} x$
\n $\cot y = x$
\nDifferentiate $w - r - t$ 'x'
\n $\frac{d}{dx} (cot y) = \frac{d}{dx} (x)$
\n $\frac{d}{dx} (cot y) = \frac{d}{dx} (x)$
\n $\frac{dy}{dx} = 1$

$$
\frac{dy}{dx} = \frac{-1}{\csc^2 y}
$$
\n
$$
= 1 + \cot^2 y = \csc^2 y
$$
\nPut in \longrightarrow
\n
$$
\frac{dy}{dx} = \frac{-1}{1 + \cot^2 y}
$$
\n
$$
\therefore \cot y = x
$$
\n
$$
\frac{dy}{dx} = \frac{-1}{1 + x^2}
$$

Formulas

$$
16.\sin^2 y + \cos^2 y = 1
$$

17.1+ $tan^2 y = sec^2 y$

$$
18.1 + \cot^2 y = \csc^2 y
$$

Exponential Functions:-

 $\frac{x}{a}$, $a \neq 0$, $a > 1$ is Exponential Function.

(i)

1. Find $\frac{dy}{dx}$ of Natural Exponential Functions.

i.
$$
\frac{dy}{dx} = (e)^x
$$

\n $Sol: -$
\nii. $\frac{dy}{dx} = (e)^{3x}$
\n $Sol: -$
\niii. $\frac{dy}{dx} = (e)^{\sin x}$
\n $Sol: -$

$$
\frac{dy}{dx} = (e)^x
$$
\n
$$
\Rightarrow e^x \frac{d}{dx}(x)
$$
\n
$$
\frac{dy}{dx} = \frac{e^{3x}}{dx} \frac{d}{dx}(3x)
$$
\n
$$
\Rightarrow e^{\sin x} \frac{d}{dx}(\sin x)
$$
\n
$$
\frac{dy}{dx} = \frac{e^x \ln x}{dx}
$$
\n2. Find $\frac{dy}{dx}$ of Common Exponential Functions.
\ni. $\frac{dy}{dx} = (a)^x$
\n
$$
\frac{dy}{dx} = (a)^x
$$
\n
$$
\frac{dy}{dx} = (2)^x
$$
\n
$$
\frac{dy}{dx} = (3)^x
$$
\n
$$
\frac{dy}{dx} = (a)^x
$$
\n
$$
\frac{dy}{dx} = (2)^x
$$
\n
$$
\frac{dy}{dx} = (3)^x
$$
\n
$$
\frac{dy}{dx} = (3)^x
$$
\n
$$
\frac{dy}{dx} = (3)^x
$$
\n
$$
\frac{dy}{dx} = (7)^x \ln 2
$$
\n
$$
\frac{dy}{dx} = (7)^x \ln 2
$$
\n
$$
\frac{dy}{dx} = (7)^{3x}
$$
\n
$$
\frac{50!}{2x \ln 2}
$$
\n
$$
\frac{dy}{dx} = (7)^{3x}
$$
\n
$$
\frac{dy}{dx} = 7^{3x} \ln 7 \frac{d}{dx} (3x)
$$

 7 sec x_l

 $3x$ _{l}

\n- Derivative Of Hyperbolic Function:
\n- $$
1. \frac{d}{dx}(\sin hx) = \cos hx = \frac{e^x - e^{-x}}{2}
$$
\n- $\frac{d}{dx}(\cos hx) = \sin hx = \frac{e^x + e^{-x}}{2}$
\n- $\frac{d}{dx}(\tan hx) = \sec h^2 x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
\n- $\frac{d}{dx}(\cot hx) = -\cosh^2 x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$
\n- $\frac{d}{dx}(\sec hx) = -\tan hx \cdot \sec hx = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$
\n

6.
$$
\frac{d}{dx}(\csc hx) = -\cot hx \cdot \csc hx = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}
$$

Derivative Of Inverse Hyperbolic Function :-

1.
$$
\frac{dy}{dx} \sinh^{-1} x = \frac{1}{\sqrt{1+x^2}}
$$

2. $\frac{dy}{dx} \cosh^{-1} x = \frac{-1}{\sqrt{x^2-1}}$

3.
$$
\frac{dy}{dx}
$$
 tanh⁻¹ x = $\frac{1}{1-x^2}$

- 4. $\frac{dy}{dx}$ cose ch⁻¹ x = $\frac{1}{|x|\sqrt{x}}$ $|x|\sqrt{x^2}$
- 5. $\frac{dy}{dx}$ secch⁻¹ $x = \frac{-1}{|x|\sqrt{1}}$ $|x|\sqrt{1-x^2}$
- 6. $\frac{d}{d}$ $\frac{dy}{dx}$ coth⁻¹ $x = \frac{-}{x^2}$ x^2

 Proofs:- 1. Show that Suppose (i) 2 c o s h *^y* 2 1 sin h *^y*

. \parallel 2. Show that $\frac{d}{d}$ $\frac{dy}{dx}$ cosh⁻¹ $x = \frac{1}{\sqrt{x^2}}$ $\frac{1}{\sqrt{x^2-1}}$ $Sol:$ Suppose $coshy = x$ Differentiate $w - r - t$ 'x' $\frac{d}{dx}(\cosh y) = \frac{d}{dy}$ \boldsymbol{d} $\frac{d}{dx}$ (\boldsymbol{d} $\frac{dy}{dx} = 1$ \boldsymbol{d} $\frac{dy}{dx} = \frac{1}{\sinh^2}$ $\frac{1}{\sinh y} \longrightarrow (i)$ $\Rightarrow \cosh^2 y - \sinh^2 y = 1$ \Rightarrow cosh²y - 1 = sinh²y Taking " $\sqrt{\ }}$ " on both sides $\sqrt{\cosh^2 y - 1} = \sqrt{\sinh^2}$ sinh $y = \sqrt{\cosh^2 y - 1}$ Put in $\xrightarrow{\bullet}$ \boldsymbol{d} $\frac{dy}{dx} = \frac{1}{\sqrt{\cosh x}}$ $\frac{1}{\sqrt{\cosh^2 y - 1}}$ \therefore cosh $y = x$

Questions:-

1. Use any suitable rule of differentiation to perform $\frac{dy}{dx}$ for the following functions.

a.
$$
y = a^x \sin x
$$

\nb. $y = e^{\alpha x} \cdot \cosh x$
\nSol:-
\n $y = a^x \cdot \sin x$
\nDifferentiate $w - r - t$ 'x'
\n $\frac{d}{dx}(y) = \frac{d}{dx}(a^x \cdot \sin x)$
\nUsing Product Rule
\n $\frac{dy}{dx} = a^x \cdot \frac{a}{dx} \sin x + \sin x \frac{a}{dx} a^x$
\n $\frac{dy}{dx} = a^x \cdot \cos x + \sin x \cdot a^x \ln a$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \frac{d}{dx} \cosh x + \cosh x \cdot a^x \frac{d}{dx} e^{\alpha x}$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = a^x \cdot \cos x + \sin x \cdot a^x \ln a$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \cdot \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = e^{\alpha x} \cdot \sinh x + \cosh x \cdot e^{\alpha x} \cdot \frac{d}{dx} (ax)$
\n $\frac{dy}{dx} = e^{\alpha$

$$
\frac{dy}{dx}y = \frac{1}{\sqrt{1-\tan h^2 x}} \frac{d}{dx}(\tanh x)
$$
\n
$$
\frac{dy}{dx} = e^{ax} \cdot \frac{d}{dx} \sin^2 x + \sin^2 x \frac{dy}{dx} e^{ax}
$$
\n
$$
\frac{d}{dx}(\tan h x) = \operatorname{sech}^2 x
$$
\n
$$
\frac{dy}{dx} = \frac{1}{\sqrt{1-\tan h^2 x}} \operatorname{sech}^2 x
$$
\n
$$
\frac{dy}{dx} = \frac{\operatorname{sech}^2 x}{\sqrt{1-\tan h^2 x}} \operatorname{sech}^2 x
$$
\n
$$
\frac{dy}{dx} = e^{ax} \cdot 2 \sin x \frac{d}{dx} \sin x + \sin^2 x \cdot e^{ax} \frac{d}{dx}(\alpha x)
$$
\n
$$
\frac{dy}{dx} = e^{ax} \cdot 2 \sin x (\cos x) + \sin^2 x \cdot e^{ax} \cdot \alpha
$$
\n
$$
\frac{dy}{dx} = \frac{\operatorname{sech}^2 x}{\sqrt{1-\tan h^2 x}} \qquad \frac{dy}{dx} = e^{ax} \cdot 2 \sin x (\cos x) + \sin^2 x \cdot e^{ax} \cdot \alpha
$$
\n
$$
\frac{dy}{dx} = 2 \sin x \cos x \cdot e^{ax} + \alpha \cdot e^{ax} \cdot \sin^2 x \cdot \text{Ans.}
$$
\n
$$
\frac{dy}{dx} = \frac{\operatorname{sech}^2 x}{\operatorname{sech}^2 x}
$$
\n
$$
\frac{dy}{dx} = \frac{\operatorname{sech}^2 x}{\operatorname{sech}^2 x}
$$
\n
$$
\frac{dy}{dx} = \frac{\operatorname{sech}^2 x}{\operatorname{sech}^2 x}
$$
\n
$$
\frac{dy}{dx} = 2 \sin x \cos x \cdot e^{ax} + \alpha \cdot e^{ax} \cdot \sin^2 x \cdot \text{Ans.}
$$
\n
$$
\frac{dy}{dx} = \frac{\operatorname{sech}^2 x}{\operatorname{sech}^2 x}
$$
\n
$$
\frac{dy}{dx} = 2 \sin x \cdot \cos x \cdot e^{ax} + \alpha \cdot e^{ax} \cdot \sin^2 x \cdot \text{Ans.}
$$
\n
$$
\frac{dy}{dx} = \frac{\sin x}{\sqrt{x}}
$$
\n

$$
\frac{dy}{dx} = \frac{\sin\sqrt{x} \cdot \frac{d}{dx}(\sqrt{\sin x}) - \sqrt{\sin x} \cdot \frac{d}{dx}(\sin\sqrt{x})}{(\sin\sqrt{x})^2}
$$
\n
$$
\frac{dy}{dx} = \frac{\sin\sqrt{x} \cdot \frac{d}{dx}(\sin x)^{\frac{1}{2}} - \sqrt{\sin x} \cdot (\cos\sqrt{x}) \cdot \frac{d}{dx}(\sqrt{x})}{(\sin\sqrt{x})^2}
$$
\n
$$
\frac{dy}{dx} = \frac{\sin\sqrt{x} \cdot \frac{1}{2}(\sin x)^{\frac{1}{2}-1} \frac{d}{dx}(\sin x) - \sqrt{\sin x} \cdot (\cos\sqrt{x}) \cdot \frac{dy}{dx}(\sqrt{x})}{(\sin\sqrt{x})^2}
$$
\n
$$
\frac{dy}{dx} = \frac{\sin\sqrt{x} \cdot \frac{1}{2}(\sin x)^{\frac{1-2}{2}}(\cos x) - \sqrt{\sin x} \cdot (\cos\sqrt{x}) \cdot \frac{1}{2}(x)^{\frac{1}{2}-1}}{(\sin\sqrt{x})^2}
$$

$$
\frac{dy}{dx} = \frac{\sin \sqrt{x} \cdot \frac{1}{2} (\sin x)^{-1} (\cos x) - \sqrt{\sin x} \cdot (\cos \sqrt{x}) \cdot \frac{1}{2} (x)^{-1}}{(\sin \sqrt{x})^2}
$$

$$
\frac{dy}{dx} = \frac{\sin \sqrt{x} \cdot \frac{1}{2\sqrt{\sin x}} (\cos x) - \sqrt{\sin x} \cdot (\cos \sqrt{x}) \cdot \frac{1}{2\sqrt{x}}}{(\sin \sqrt{x})^2}
$$

The End of Week # 07