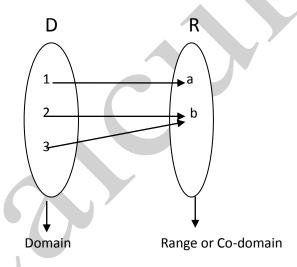
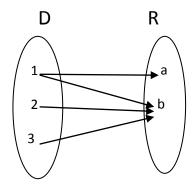
Functions and Graphs


• FUNCTION:-

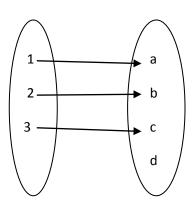
A function from a set "D" to a set "R" is a rule that assigns a unique element f(x) in "R" to each element "x" in "D".


OR

Every input which exactly only one output is called function.

$$D = \{ 1,2,3 \}$$

 $R = \{ a,b \}$


- ❖ In the above function Domain is equal to set "D".
- Domain is non-repeated.
- ❖ So it is a function.

It is not a function because Domain is repeated.

D

R

- It is a function.
- Types of functions:-
 - 1. Linear equations:-

ax + b = 0, $a \neq 0$ Is called Linear Equations.

Linear Function:-

$$F(x) = ax + b = 0$$
, $a \neq 0$ is called Linear Function.

$$f(x) = 1x + 0$$

$$\Rightarrow f(x) = x^1$$

$$f(x) = 1x + 10$$
 =>> $f(x) = x + 1$

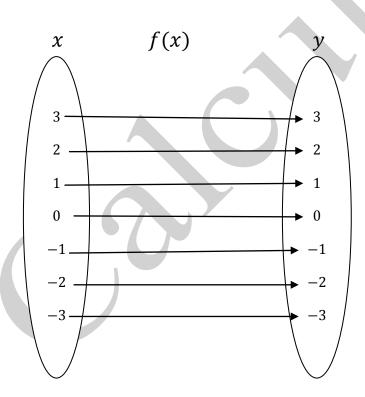
$$\Rightarrow f(x) = x + 1$$

♦
$$f(x) = \sqrt{2}x^1 + \sqrt{3}$$

•
$$f(x) = \sqrt{2}x^1 + \sqrt{3} = f(x) = \sqrt{2}x + \sqrt{3}$$

Questions :-

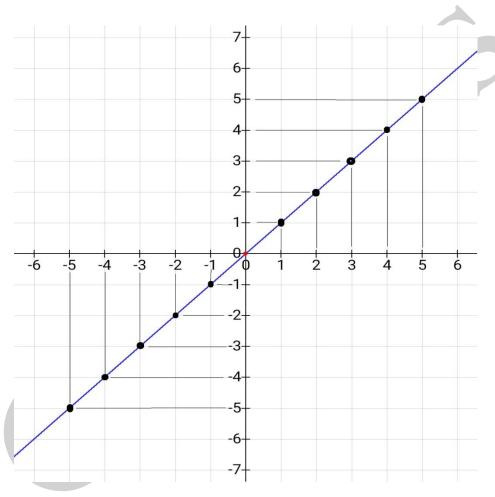
1.
$$f(x) = x$$


$$Sol: -$$

• y = x

Domain +Input + Pre-image + Independent Variable

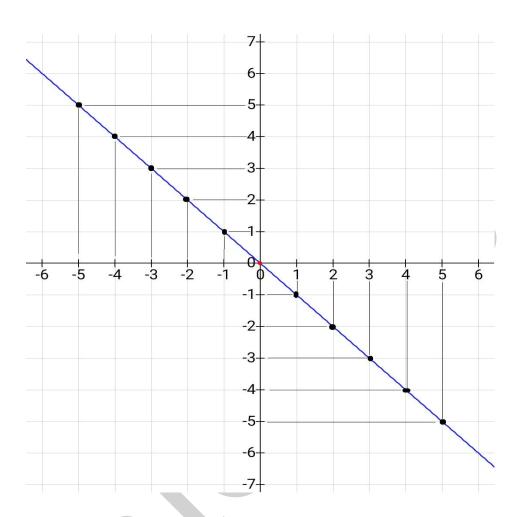
X	-3	-2	-1	0	1	2	3	4	5
y = x	-3	-2	-1	0	1	2	3	4	5
1									


Range + Output + Image + Dependent Variable

- Domain $D = x \in IR$ $(-\infty, \infty)$
- Range $R = y \in IR$ $(-\infty, \infty)$

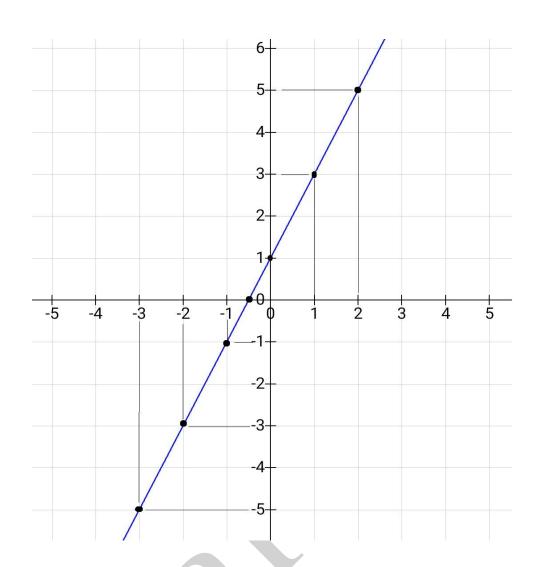
- Graph of Linear function.
- i. f(x) = x. $x \in \{-3, -2, -1, 0, 1, 2, 3\}$

х	-3	-2	-1	0	1	2	3	4	5
y = x	-3	-2	-1	0	1	2	3	4	5

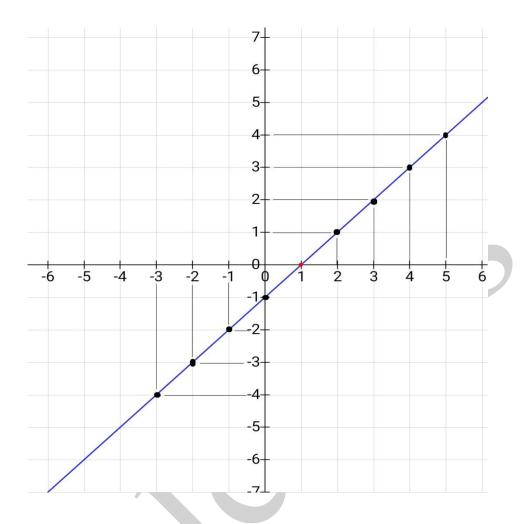


The Graph of Linear Equation will give straight line.

ii.
$$F(x) = -x$$


$$x \in \{\,-3,-2,-1,0,1,2,3\,\}$$

х	-3	-2	-1	0	1	2	3	4	5
y = -x	3	2	1	0	-1	-2	-3	-4	- 5


iii.
$$f(x) = 2x + 1$$

 $x \in \{-3, -2, -1, 0, 1, 2, 3\}$

x	-3	-2	-1	0	1	2	3	4
y = 2x + 1	- 5	-3	-1	1	3	5	7	9

iv.
$$f(x) = x - 1$$

 $x \in \{-3, -2, -1, 0, 1, 2, 3\}$

X	-3	-2	-1	0	1	2	3	4	5
y = x - 1	-4	-3	-2	-1	0	1	2	3	4

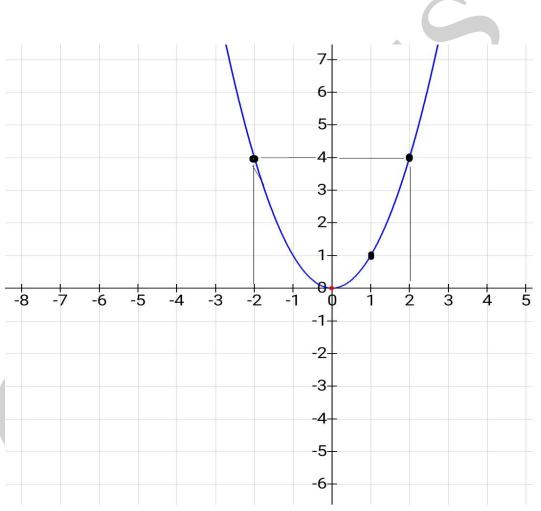
2. Quadratic Equations:-

 $ax^2 + bx + c = 0$, $a \neq 0$ is called quadratic equations.

Quadratic Function:-

 $f(x) = y = ax^2 + bx + c = 0$, $a \neq 0$ is called quadratic

function.


• Domain
$$D = x \in IR$$

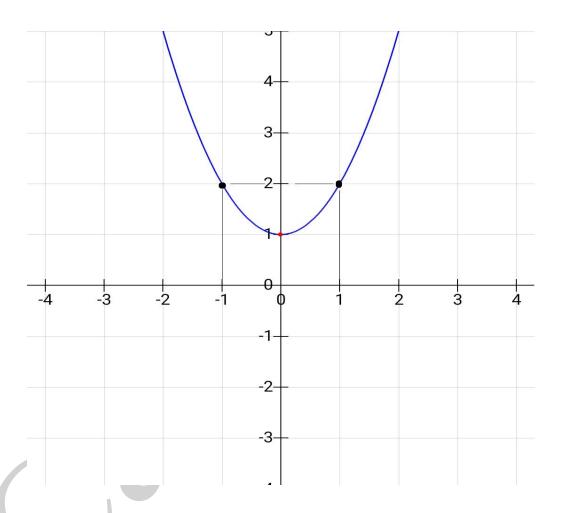
• Range
$$R = y \in IR$$

• Questions:-

i.
$$f(x) = x^2$$

 $x \in \{-3, -2, -1, 0, 1, 2, 3\}$

х	-3	-2	-1	0	1	2	3	4	5
$y = x^2$	9	4	1	0	1	4	9	16	25

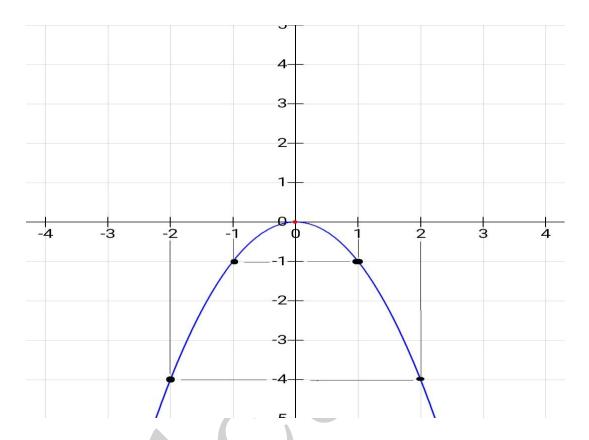


• The Quadratic graph will be Always Parabola

ii.
$$x^2 + 1$$

$$x \in \{-3, -2, -1, 0, 1, 2, 3\}$$

X	-3	-2	-1	0	1	2	3	4	5
$y = x^2 + 1$	10	5	2	1	2	5	10	17	26



• The Quadratic graph will be Always Parabola

iii.
$$-x^2$$

 $x \in \{-3, -2, -1, 0, 1, 2, 3\}$

	<i>n</i> C	(3, 2,	1,0,1,2,0)					
x	-3	-2	-1	0	1	2	3	4	5
$y = -x^2$	- 9	-4	-1	0	-1	-4	-9	-16	-25

• The Quadratic graph will be Always Parabola

iv.
$$-x^2 - 1$$

$$x \in \{-3, -2, -1, 0, 1, 2, 3\}$$

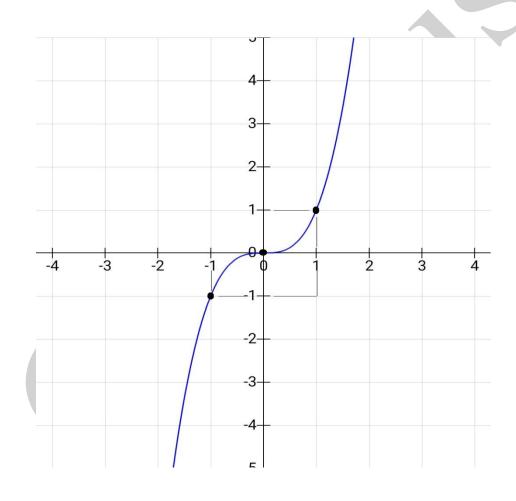
	= (-	-, -, -, -,	_, - ,				
x	-3	-2	-1	0	1	2	3
$y = -x^2 - 1$	-10	-5	-2	-1	-2	- 5	-10

Cube function:- $f(x) = x^3$ is called cube function.

Domain

$$D = x \in IR$$

Range


$$R = y \in IR$$

Questions:-

i.
$$f(x) = x^3$$

 $x \in \{-3, -2, -1, 0, 1, 2, 3\}$

	<i>n</i> – (0,	<u> </u>	- , 0)				
x	-3	-2	-1	0	1	2	3
$y = x^3$	- 9	-8	-1	0	1	8	27

• Even function :-

A function f(x) is said to be even function, if f(-x) = f(x).

Questions:-

i.
$$F(x) = x^2$$

$$f(x) = x^2$$

$$put x = -x$$

$$f(-x) = (-x)^2$$

$$f(-x) = x^2$$

$$f(-x) = x^2$$

$$f(-x) = f(x)$$
 Ans. Even Function

ii.
$$F(x) = x^2 + 1$$

$$f(x) = x^2 + 1$$

$$put x = -x$$

$$f(-x) = (-x)^2 + 1$$

$$f(-x) = x^2 + 1$$

$$f(-x) = x^2 + 1$$

$$f(-x) = f(x)$$
 Ans. Even Function

Odd Function:-

A function f(x) is said to be even function, if f(-x) = -f(x).

Questions:-

i.
$$F(x) = x^3$$

$$f(x) = x^3$$

put $x = -x$

$$f(-x) = (-x)^3$$

$$f(-x) = -x^3$$

$$f(-x) = -f(x)$$
 Ans. Odd Function

Neither Function:-

A function which is neither even nor odd.

Questions:-

i.
$$f(x) = x + 1$$
$$Sol: -$$

$$f(x) = x + 1$$

$$put x = -x$$

$$f(-x) = (-x) + 1$$

$$f(-x) = -x + 1$$

$$f(-x) = -x + 1$$
 Ans. Neither Function

ii.
$$f(x) = x^2 + x$$
$$Sol: -$$

$$f(x) = x^2 + x$$

$$put x = -x$$

$$f(-x) = (-x^2) + x$$

$$f(-x) = x^2 - x$$

$$f(-x) = -(-x^2 + x)$$

$$f(-x) = -(-x^2 + x) Ans.$$
 Neither Function

• Show that whether the function is even, odd or neither.

$$f(x) = 3$$

Sol:
$$-$$

$$f(x) = 3$$

$$put x = -x$$

ii.
$$f(x) = x^{-5}$$

$$f(x) = x^{-5}$$

$$put x = -x$$

$$f(-x) = 3$$
$$f(-x) = f(x)$$

$$f(-x) = f(x)$$
 Ans. Even Function

iii.
$$f(x) = x^{2} + 1$$

$$Sol: -$$

$$f(x) = x^{2} + 1$$

$$put x = -x$$

$$f(-x) = (-x^{2}) + 1$$

$$f(-x) = x^{2} + 1$$

$$f(-x) = f(x)$$
 Ans. Even Function

v...
$$g(x) = x^{3} + x$$

$$Sol: -$$

$$g(x) = x^{3} + x$$

$$put x = -x$$

$$g(-x) = (-x)^{3} - x$$

$$g(-x) = -x^{3} - x$$

$$g(-x) = -(x^{3} + x)$$

g(-x) = -g(x) Ans. Even Function

$$f(-x) = (-x)^{-5}$$
$$f(-x) = -x^{-5}$$

$$f(-x) = -f(x)$$
 Ans. Odd Function

iv.
$$f(x) = x^2 + x$$

 $Sol: -$
 $f(x) = x^2 + x$
 $put x = -x$
 $f(-x) = (-x^2) - x$
 $f(-x) = x^2 - x$
 $f(-x) = -(-x^2 + x)$

$$f(-x) \neq f(x)$$
 Neither Function $f(-x) \neq -f(x)$

vi.
$$g(x) = x^4 + 3x^2 - 7$$

 $Sol: -$
 $g(x) = x^4 + 3x^2 - 7$
 $put x = -x$
 $g(-x) = (-x^4) + 3(-x^2) - 7$
 $g(-x) = x^4 + 3x^2 - 7$

$$g(-x) = g(x) Ans$$
. Even Function

vii.
$$g(x) = \frac{1}{x^2 - 1}$$

$$Sol: -$$

$$g(x) = \frac{1}{x^2 - 1}$$

$$put \ x = -x$$

$$g(-x) = \frac{1}{(-x)^2 - 1}$$

$$g(-x) = \frac{1}{x^2 - 1}$$

$$g(-x) = g(x) \ Ans.$$
 Even function

viii.
$$h(t) = \frac{1}{t-1}$$

$$Sol: -$$

$$h(t) = \frac{1}{t-1}$$

$$put \ t = -t$$

$$h(-t) = \frac{1}{-t-1}$$

$$h(-t) = \frac{1}{-(t+1)}$$

$$h(-t) \neq h(t)$$

$$h(-t) \neq -h(t)$$
neither function

ix.
$$h(t) = |t^3|$$

Sol: -

 $h(t) = |t^3|$
 $put \ t = -t$
 $h(-t) = |-t^3|$
 $h(-t) = |-1| \cdot |t^3|$:: $|-1| = 1$
 $h(-t) = |t^3|$
 $h(-t) = h(t) \ Ans.$ Even Function

ix. h(t) = 2|t| + 1

Sol: -

x.
$$h(t) = 2t + 1$$

$$Sol: -$$

$$h(t) = 2t + 1$$

$$put t = -t$$

$$h(-t) = 2(-t) + 1$$

$$h(-t) = -2t + 1$$

$$h(-t) = -(2t - 1)$$

$$h(-t) \neq h(t)$$

$$h(-t) \neq -h(t)$$
Neither Function

$$h(t) = 2|t| + 1$$

$$put t = -t$$

$$h(-t) = 2|-t| + 1$$

$$h(-t) = 2|-1 \times t| + 1$$

$$h(-t) = 2|-1|.|t| + 1$$
 : $|-1| = 1$

$$h(-t) = 2|t| + 1$$

$$h(-t) = h(t)$$
 Ans. Even Function

Composition or Composite Function:-

Composition is another method for combining functions.

Definition:-

If f(x) and g(x) are two functions are composite function

(fog) Is defined by

$$(f \circ g)(x) = f(g(x)).$$

In fog "o" represents circle or composite

Questions:-

i.
$$F(x) = \sqrt{x}, \ g(x) = x + 1$$

Find.....

(a).
$$(f \circ g)(x)$$

(b).
$$(gof)(x)$$

(c).
$$(f \circ f)(x)$$

(d).
$$(gog)(x)$$

(a).
$$(f \circ g)(x)$$

Sol: -

$$f(x) = \forall x$$

$$f(g(x)) = \sqrt{(g(x))}$$

$$(f \circ g)(x) = \sqrt{x+1}$$

$$fog)(x) = \sqrt{x+1} \ Ans.$$

(b).
$$(gof)(x)$$

Sol: -

$$g(x) = x + 1$$

$$g(f(x)) = f(x) + 1$$

$$gof)(x) = \sqrt{x} + 1 \ Ans.$$

(c).
$$(f \circ f)(x)$$

Sol: -

$$f(x) = \sqrt{x}$$

$$f\big(f(x)\big) = \sqrt{\sqrt{x}}$$

$$(fof)(x) = \left(x^{\frac{1}{2}}\right)^{\frac{1}{2}}$$

$$(fof)(x) = x^{\frac{1}{4}}$$

$$(fof)(x) = x^{\frac{1}{4}} Ans.$$

(d).
$$(gog)(x)$$

Sol: -

$$g(x) = x + 1$$

$$g(g(x)) = g(x) + 1$$

$$(gog)(x) = x + 1 + 1$$

$$(gog)(x) = x + 2$$

$$(gog)(x) = x + 2 \ Ans.$$

$$ii. \qquad f(x) = x^2 - 2$$

$$g(x) = x + 3$$

Sol: -

Find fog gof

$$fog = ?$$

$$f(x) = x^2 - 2$$

$$f(g(x)) = (g(x)^2) - 2$$

$$(fog)(x) = (x+3)^2 - 2$$

$$(f \circ g)(x) = x^2 + 6x + 9 - 2$$

$$(f \circ g)(x) = x^2 + 6x + 7$$

$$(f \circ g)(x) = (x^2 + 6x + 7 Ans.)$$

$$gof = ?$$

$$g(x) = x + 3$$

$$g(f(x)) = f(x) + 3$$

$$(gof)(x) = x^2 - 2 + 3$$

$$(gof)(x) = x^2 + 1$$

$$(gof)(x) = x^2 + 1 Ans.$$

iii.
$$f(x)x + 5$$
, $g(x) = x^2 - 3$

Find.....b

(a).
$$(fog)(x)$$

(b).
$$(gof)(x)$$

(c).
$$(f \circ f)(x)$$

(d).
$$(gog)(x)$$

$$(a)$$
. $(fog)(x)$

$$Sol: -$$

(b).
$$(gof)(x)$$

$$Sol: -$$

$$f(x) = x + 5$$

$$f(g(x)) = g(x) + 5$$

$$(f \circ g)(x) = x^2 - 3 + 5$$

$$(fog)(x) = x^2 + 2$$

$$(fog)(x) = x^2 + 2 Ans.$$

(c).
$$fof(x)$$

$$f(x) = x + 5$$

$$f(f(x)) = f(x) + 5$$

$$fof(x) = x + 5 + 5$$

$$fof(x) = x + 10$$

$$fof(x) = x + 10 Ans.$$

$$g(x) = x^2 - 3$$

$$g(f(x)) = (f(x)^2) - 3$$

$$(gof)(x) = (x+5)^2 - 3$$

$$(gof)(x) = (x^2 + 2(x)(5) + 25 - 3)$$

$$(gof)(x) = x^2 + 10x + 22$$

$$(gof)(x) = x^2 + 10x + 22 Ans.$$

(d).
$$gog(x)$$

$$Sol: -$$

$$g(x) = x^2 - 3$$

$$g(g(x)) = (g(x)^2 - 3$$

$$gog(x) = (x^2 - 3)^2 - 3$$

$$gog(x) = (x^2)^2 - 2(x^2)(3) + 9 - 3$$

$$gog(x) = x^4 - 6x^2 + 6$$

$$gog(x) = x^4 - 6x^2 + 6 \quad Ans.$$

iv.
$$f(x) = x - 1$$
, $g(x) = \frac{1}{x+1}$

- (a) fog(x)
- (b) Gof(x)
- (c) fof(x)
- (d) gog(x)

(a)
$$fog(x)$$

$$Sol: -$$

$$f(x) = x - 1$$

$$g(x) = \frac{1}{x+1}$$

$$F(g(x)) = (g(x)) - 1$$

$$(fog)(x) = \frac{1}{x+1} - 1$$

$$(fog)(x) = \frac{1-1}{x+1}$$

$$(f \circ g)(x) = \frac{0}{x+1}$$

$$(fog)(x) = \frac{0}{x+1} Ans.$$

(c)
$$fof(x)$$

$$f(x) = x - 1$$

$$f(f(x)) = f(x) - 1$$

$$(f \circ f)(x) = (x - 1) - 1$$

(b)
$$gof(x)$$

$$Sol: -$$

$$g(x) = \frac{1}{x+1}$$

$$g(f(x)) = \frac{1}{(f(x))+1}$$

$$(gof)(x) = \frac{1}{(x-1)+1}$$

$$(gof)(x) = \frac{1}{x - 1/x}$$

$$(gof)(x) = \frac{1}{x} Ans.$$

(d)
$$gog(x)$$

$$g(x) = \frac{1}{x+1}$$

$$g(g(x)) = \frac{1}{g(x)+1}$$

$$g(g(x)) = \frac{1}{\frac{1}{x+1} + 1}$$

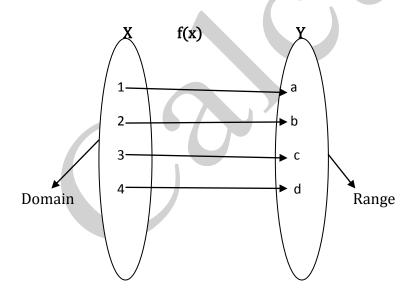
$$(fof)(x) = x - 1 - 1$$

$$(fof)(x) = x - 2$$

$$(fof)(x) = x - 2 Ans.$$

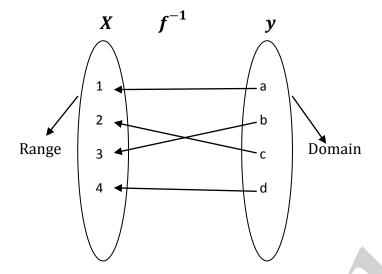
$$g(g(x)) = \frac{1}{\frac{1+1}{x+1}}$$

$$gog(x) = \frac{1}{\frac{2}{x+1}}$$


$$gog(x) = \frac{2}{x+1}Ans.$$

• Inverse Function :-

For any inverse function. The function must be bijective function.


• Bijective Function :-

- i. One-to-one function
- ii. On-to-function

- i. Domain of $f(x) = \text{Range of } f^{-1}(x)$
- ii. Range of $f(x) = Domain of f^{-1}(x)$

$$R = \{ (1, a), (2, c), (3, b), (4, d) \}$$

$$R = \{ (a 1), (c, 2), (b, 3), (d, 3) \}$$

• Questions:-

i.
$$f(x) = x + 5$$
 find $f^{-1} = ?$

Sol:

Step 1:-

Suppose
$$f(x) = y$$

$$x = f^{-1}(y)$$

$$y = x + 5$$

Step 2:-

$$y = x + 5$$

$$y - 5 = x + -5 + 5$$

$$y - 5 = x$$

Step 3:-

Replace "
$$x$$
" by $f^{-1}(y)$

$$f^{-1}(y) = y - 5$$

Step 4:-

$$f^{-1}(y) = y - 5$$

Replace "y" by "x"

$$f^{-1}(x) = x - 5$$

$$f^{-1}(x) = x - 5 Ans.$$

ii. Find c
$$f^{-1} = ?$$
 Where $f(x) = 2x - 1$
Sol: -

Step 1:-

Suppose
$$f(x) = y$$

$$x = f^{-1}(y)$$

$$y = 2x - 1$$

Step 2:-

$$y = 2x - 1$$

$$y + 1 = 2x - 1 + 1$$

$$y + 1 = 2x$$

$$\chi = \frac{y+1}{2}$$

Step 3:-

Replace "x" by $f^{-1}(y)$

$$x = \frac{y+1}{2}$$

$$f^{-1}(y) = \frac{y+1}{2}$$

Step 4:-

$$f^{-1}(y) = \frac{y+1}{2}$$

Replace "y" by "x"

$$f^{-1}(x) = \frac{x+1}{2}$$

$$f^{-1}(x) = \frac{x+1}{2}Ans.$$

Types of Functions :-

1. Polynomial Function:-

$$p(x) = anx^{n} + an - 1x^{n-1} + an - 2x^{n-2} + - - - - -$$

$$p(x) = a \circ$$
 Constant Function

$$p(x) = a_{1+a_2}$$

$$p(x) = a2x^2 + a1x + a \circ$$
 Quadratic Function

$$p(x) = a3x^3 + a2x^2 + a_{1x+}a \circ$$
 Cubic Function

2. Trigonometric Function:-

1.
$$f(x) = \sin x$$

$$2. \quad f(x) = \cos x$$

3.
$$f(x) = \tan x$$

$$4. \quad f(x) = \csc x$$

$$5. \ f(x) = \sec x$$

6.
$$f(x) = \cot x$$

3. Inverse Trigonometric Function:-

1.
$$f(x) = \sin^{-1} x$$

2.
$$f(x) = \cos^{-1} x$$

3.
$$f(x) = \tan^{-1} x$$

4.
$$f(x) = \csc^{-1} x$$

5.
$$f(x) = \sec^{-1} x$$

6.
$$f(x) = \cot^{-1} x$$

4. Exponential Function:-

$$f(x) = a^x$$
, $a \neq 1$, $a > 0$

$$f(x) = 2^x$$

$$f(x) = 3^x$$

$$f(x) = (\frac{1}{2})^x$$

$$f(x) = (\frac{1}{3})^x$$

Common exponential function

 $f(x) = e^x$ Natural Exponential Function.

The End of Week # 03

Lecturer: Mr. Asad Ali

Composed By: Ahmad Jamal

an

Bs C-s 1st semester

Contact # 0345-9036870

Email:

iamalgee555@gmail.com