

	Angles						
	In Degree						
$\succ x = r \cos \theta$		Sin	Cos	Tan	Sec	Cosec	Cot
$\succ x = \cos(30^\circ)$	0°	0	1	0	1	not defined	not defined
$x = \frac{\sqrt{3}}{\sqrt{3}}$ (A)	30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\frac{2}{\sqrt{3}}$	2	$\sqrt{3}$
	45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	$\sqrt{2}$	$\sqrt{2}$	1
	60°	$\frac{\sqrt{3}}{2}$	<u>1</u> 	$\sqrt{3}$	2	$\frac{2}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$
	90°	1	0	not defined	not defined	1	0

- $y = r \sin\theta$
- $y = (1) sin(30^{\circ})$
- $y = sin 30^{\circ}$

•
$$Z = x + yi$$
 \longrightarrow (1)

Put \longrightarrow (A) and \longrightarrow (B) in \longrightarrow (1) > $Z = \frac{\sqrt{3}}{2} + \frac{1}{2}i$

$$Z = \frac{\sqrt{3}}{2} + \frac{1}{2}i \text{ Ans.}$$

(ii) (2, 45°) Sol: r = 2, $\theta = 45^{\circ}$

$$\succ$$
 $x = rcos\theta$

$$x = (3)\left(-\frac{\sqrt{3}}{2}\right)$$

$$x = (3)\left(-\frac{\sqrt{3}}{2}\right) \longrightarrow (A)$$

$$▷$$
 y = rsinθ

$$\flat \quad y = 3 \left(-\frac{1}{2} \right)$$

$$y = \left(-\frac{3}{2}\right) \longrightarrow (B)$$

$$\succ Z = x + yi \longrightarrow (1)$$

Put
$$\longrightarrow$$
 (A) and \longrightarrow (B) in \longrightarrow (1)

$$Z = (3)\left(\frac{\sqrt{3}}{2}\right) + \left(\frac{3}{2}\right)i Ans.$$

$$r = 3$$
, $\theta = -60^{\circ}$

$$\succ$$
 $x = rcos$

- > $x = (3)cos(-60^{\circ})$
- > $x = 3(-\frac{1}{2})$

▶
$$y = (3)sin(-60)$$

- 2. Find the cordinates of the following Complex Numbers.
- (i) (1,1), (x,y) Sol: –
- > x = 1, y = 1

We know that $r = \sqrt{x^2 + y^2}$

- > $r = \sqrt{1^2 + 1^1}$
- \succ $r = \sqrt{1+1}$
- ≻ $r = \sqrt{2}$
- \succ $r = \sqrt{2}$

Now we know that $\theta = tan^{-1}\left(\frac{y}{x}\right)$

$$\succ \ \theta = tan^{-1} \left(\frac{1}{1} \right)$$

$$\begin{array}{l} \succ \quad \theta = \tan^{-1}(1) \\ \succ \quad \theta = 45^{\circ} \text{ or } \frac{\pi}{4} \\ \hline \theta = 45^{\circ} \text{ or } \frac{\pi}{4} \text{ Ans.} \\ (ii) \qquad \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right), (x, y) \\ \text{ Sol:} - \\ \succ \quad x = \frac{\sqrt{3}}{2}, y = \frac{1}{2} \\ \text{We know that} \\ r = \sqrt{x^2 + y^2} \\ \succ \quad r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} \implies r = \sqrt{\left(\frac{\left(\sqrt{3}, \frac{y}{2}\right)^2}{\left(\frac{y}{2}\right)^2 + \left(\frac{1}{2}\right)^2}\right)} \\ \succ \quad r = \sqrt{\left(\frac{\sqrt{3}}{2}\right)^2 + \left(\frac{1}{2}\right)^2} \implies r = \sqrt{\left(\frac{\left(\sqrt{3}, \frac{y}{2}\right)^2}{\left(\frac{y}{2}\right)^2 + \left(\frac{1}{2}\right)^2}\right)} \\ \succ \quad r = \sqrt{\left(\frac{\sqrt{3}}{4}\right) + \left(\frac{1}{2}\right)} \\ \succ \quad r = \sqrt{\frac{3+1}{4}} \\ \succcurlyeq \quad r = \left(\sqrt{\frac{x}{4}}\right) \\ \succcurlyeq \quad r = 1 \\ \text{Now we know that } \theta = \tan^{-1}\left(\frac{y}{x}\right) \\ \succcurlyeq \quad \theta = \tan^{-1}\left(\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right) \\ \end{array}$$

$$\begin{array}{l} \succ \theta = tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \\ \succ \theta = 30^{\circ} \text{ or } \frac{\pi}{6} \\ \geqslant \overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}} \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{6} \text{ Ans.}}\right) \\ \hline \left(\overline{\theta = 30^{\circ} \text{ or } \frac{\pi}{2} \text{ or } \frac{\pi}{2}$$

$$\begin{array}{l} \flat \quad \theta = -30^{\circ} \text{ or } -\frac{\pi}{6} \\ \hline \theta = -30^{\circ} \quad or \quad -\frac{\pi}{6} \quad Ans. \\ \hline \end{array} \\ \hline \end{array} \\ \hline \left(iv \right) \quad (1,-1) \ , (x,y) \\ \hline \\ Sol: - \\ \flat \quad x = 1, y = -1 \\ \hline \\ We know that \\ r = \sqrt{x^2 + y^2} \\ \end{matrix} \\ \hline \\ r = \sqrt{1^2 + (-1)^2} \\ \hline \\ r = \sqrt{1 + 1} \\ \end{matrix} \\ \hline \\ r = \sqrt{2} \\ \hline \\ r = \sqrt{2} \\ \hline \\ Now we know that \\ \theta = tan^{-1} \left(\frac{-y'}{y} \right) \\ \hline \\ \rho = tan^{-1} \left(-\frac{1}{y'} \right) \\ \hline \\ \rho = tan^{-1} (-1) \\ \hline \\ \rho = -45^{\circ} \text{ or } -\frac{\pi}{4} \\ \hline \\ \theta = -45^{\circ} \text{ or } -\frac{\pi}{4} \quad Ans. \\ \hline \\ \textbf{De-Moivre's Theorem :-} \\ \hline \\ \rho = z = x + yi \\ \hline \\ \rho = z = rcos\theta + rsin\thetai \\ \end{array}$$

 $x = rcos\theta$ I. $y = rsin\theta$ $r = \sqrt{x^2 + y^2}$ $\theta = tan^{-1}\left(\frac{y}{x}\right)$ II. III. IV.

- $\succ Z = Z$
- \succ $(x + yi)^n = (rcos\theta + irsin\theta)^n$

Taking " \boldsymbol{r}^n " Common

$$(x + yi)^n = r^n(\cos\theta + i\sin\theta)$$

Convert Power into Angel

- $(x + yi)^n = r^n(\cos(n)(\theta) + isin(n)(\theta))$
- $\succ \quad \boxed{(x+yi)^n = r^n(\cos n\theta + i\sin n\theta)}$
- Find the Real and Imaginary parts of the following Complex Numbers using De- Moivre's Theorem.
- (1) $(\sqrt{3}+i)^2$

Sol: – we know that

Z = Z

$$(x + yi)^n = r^n(\cos(n)(\theta) + isin(n)(\theta))$$

> $(\sqrt{3}+i)^2 = r^2(\cos 2\theta + i\sin 2\theta)$ (1)

Find R = ?, $\theta = ?$

We know that $r = \sqrt{x^2 + y^2}$

$$\succ r = \sqrt{(\sqrt{3})^2 + 1^2}$$

▶
$$r = \sqrt{3+1}$$

Now we also know that $\theta = tan^{-1} \left(\frac{y}{x}\right)$ $\Rightarrow \quad \theta = tan^{-1} \left(\frac{1}{\sqrt{3}}\right)$ $\Rightarrow \quad \theta = 30^{\circ}$ $\Rightarrow \quad \theta = 30^{\circ}$ (B)

Put
$$\longrightarrow$$
 (A) and \longrightarrow (B) in \longrightarrow (1)
 $(\sqrt{3} + i)^2 = r^2(\cos 2\theta + i \sin 2\theta)$

►
$$(\sqrt{3}+i)^2 = (2)^2(\cos 2(30^\circ) + i\sin 2(30^\circ))$$

►
$$(\sqrt{3}+i)^2 = 4(\cos 60^\circ + i \sin 60^\circ)$$

➤
$$(\sqrt{3}+i)^2 = 4(\frac{1}{2}+i\frac{\sqrt{3}}{2})$$

$$(\sqrt{3}+i)^2 = \frac{\cancel{4}}{\cancel{2}} + \cancel{4}\frac{\cancel{3}}{\cancel{2}}i$$
$$(\sqrt{3}+i)^2 = 2 + 2\sqrt{3}i$$

Real Part = 2 Ans.

Imaginary Part = $2\sqrt{3i}$ Ans.

(2) $(-\frac{1}{2}, -\frac{\sqrt{3}}{2}i)^3$

Sol: – we know that

Z = Z

$$(x + yi)^n = r^n(\cos(n)(\theta) + isin(n)(\theta))$$

>
$$(-\frac{1}{2} + (-\frac{\sqrt{3}}{2}i))^3 = r^3 (\cos 3(\theta) + i \sin 3(\theta))$$

$$\left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right)^{3} = r^{3} \left(\cos 3(\theta) + i \sin 3(\theta) \right) \longrightarrow (1)$$
Find $R = ?$, $\theta = ?$

$$We know that
> $r = \sqrt{x^{2} + y^{2}}$

$$r = \sqrt{x^{2} + y^{2}}$$

$$r = \sqrt{\left(-\frac{1}{2}\right)^{2} + \frac{(\sqrt{3})^{\lambda}}{(-2)^{2}}}$$

$$r = \sqrt{\frac{1}{4} + \frac{3}{4}}$$

$$r = \sqrt{\frac{3+1}{4}}$$

$$r = \left(\sqrt{\frac{x}{4}}\right)$$

$$r = \sqrt{\frac{3+1}{4}}$$

$$r = \left(\sqrt{\frac{x}{4}}\right)$$

$$r = \frac{\sqrt{3}}{1} \longrightarrow (A)$$
Now we also know that $\theta = tan^{-1}\left(\frac{2}{x}\right)$

$$r = tan^{-1}\left(\frac{-\sqrt{3}}{1}\right)$$

$$r = tan^{-1}\left(\frac{-\sqrt{3}}{1}\right)$$

$$r = tan^{-1}(\sqrt{3})$$

$$r = tan^{-1}(\sqrt{3})$$

$$r = tan^{-1}(\sqrt{4}) = tan^{-1}(\sqrt{4})$$$$

>
$$r = \sqrt{(1)^2 + (-\sqrt{3})^2}$$

$$r = \sqrt{1 + (-\sqrt{3})^2}$$

$$r = \sqrt{1+3}$$

$$r = \sqrt{4}$$

$$\succ$$
 $r = 2$ \longrightarrow (A)

Now we also know that $\theta = tan^{-1}\left(\frac{y}{x}\right)$ $\Rightarrow \quad \theta = tan^{-1}\left(\frac{-\sqrt{3}}{1}\right)$

$$ightarrow \theta = \tan^{-1}(-\sqrt{3})$$

$$\blacktriangleright \quad \theta = -60^{\circ} \quad \longrightarrow \quad \text{(B)}$$

$$\rightarrow$$
 Put \longrightarrow (A) and \longrightarrow (B) in \longrightarrow (1)

$$\succ (1 - \sqrt{3i})^5 = r^5(\cos 5\theta + i\sin 5\theta)$$

>
$$(1 - \sqrt{3i})^5 = 2^5(\cos 5(-60^\circ + i \sin 5(-60^\circ)))$$

>
$$(1 - \sqrt{3i})^5 = 32 (\cos (-300^\circ) + isin(-300^\circ))$$

>
$$(1 - \sqrt{3i})^5 = 32(\frac{1}{2} - \frac{\sqrt{3}}{2}i)$$

$$(1 - \sqrt{3i})^5 = \left(\frac{3\cancel{2}}{\cancel{2}}\right) - 3\cancel{2}\frac{\sqrt{3}}{\cancel{2}}i$$

$$Real Part = 16 Ans.$$

$$\begin{array}{l} (\sqrt{3} + i)^{3} = 2^{3}(\cos 3(30^{\circ}) + i\sin 3(30^{\circ})) \\ (\sqrt{3} + i)^{3} = 8(\cos 90^{\circ} + i\sin 90^{\circ}) \\ (\sqrt{3} + i)^{3} = 8(0 + 1i) \\ (\sqrt{3} + i)^{3} = 0 + 8i \\ \hline \hline Real Part = 0 Ans. \\ \hline \hline Imaginary Part = 8i Ans. \\ \hline \hline Imaginary Part = 8i Ans. \\ \hline \hline Imaginary Part = 8i Ans. \\ \hline \hline ((\sqrt{3} + i)^{3} \\ Sol: - \\ we know that \\ (a + b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2} \\ (x + b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2} \\ \hline (x + b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2} \\ \hline (x + b)^{3} = a^{3} + b^{3} + 3a^{2}b + 3ab^{2} \\ \hline (a + b)^{3} = a^{3} - b^{3} - 3a^{2}b + 3ab^{2} \\ \hline (a - b)^{3} = a^{3} - b^{3} - 3a^{2}b + 3ab^{2} \\ \hline (a^{2} - b^{2} = (a + b)(a - b) \\ \hline (a^{2} - b^{2} = (a - b)(a^{2} + ab + b^{2}) \\ \hline (a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2}) \\ \hline (x^{3} + i)^{3} = 0 + 8i \\ \hline \hline Real Part = 0 Ans. \\ \hline \hline Imaginary Part = 8i Ans. \\ \hline (((\sqrt{3} + i)^{2} - b^{2}) \\ \hline ((\sqrt{3} + i)^{2} \\ \hline ((\sqrt{3} + i)^{2} \\ \hline \end{array}$$

Sol: – We know that $(a + b)^2 = a^2 + b^2 + 2ab$

$$(\sqrt{3} + i)^2 = (\sqrt{3})^{2} + (i)^2 + 2(\sqrt{3})(i)$$

- > $(\sqrt{3}+i)^2 = 3 1 + 2\sqrt{3}i$
- ➤ $(\sqrt{3} + i)^2 = 2 + 2\sqrt{3}i$

Real Part = 2 Ans.

Imaginary Part = $2\sqrt{3}i$ Ans.

(iii) $(1+i)^3$

Sol: – we know that

$$\boxed{(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2}$$

$$> (1+i)^3 = (1)^3 + (i)^3 + 3(1)^2(i) + 3(1)(i)^2 \qquad \because i^3 = -i$$

$$> (1+i)^3 = 1 + (-i) + 3i + 3(-1)$$

$$> (1+i)^3 = 1 - i + 3i - 3$$

$$> (1+i)^3 = 1 - 3 - i + 3i$$

$$> (1+i)^3 = -2 + 2i$$

$$\boxed{Real Part = -2 Ans.}$$

$$\boxed{Imaginary Part = +2i Ans.}$$

(iv)
$$(2 + 3i)^2$$

Sol: -

We know that

$$(a+b)^2 = a^2 + b^2 + 2ab$$

$$(2 + 3i)^{2} = (2)^{2} + (3i)^{2} + 2(2)(3i)$$

$$(2 + 3i)^{2} = 4 + 9(i)^{2} + 12i$$

$$(2 + 3i)^{2} = 4 + 9(-1) + 12i$$

$$(2 + 3i)^{2} = 4 - 9 + 12i$$

$$(2 + 3i)^{2} = -5 + 12i$$

$$\boxed{Real Part = -5 Ans.}$$

$$\boxed{Imaginary Part = +12i Ans.}$$

$$(3 - 5i)^{3}$$

$$Sol: -$$

$$we know that$$

$$\boxed{(a - b)^{3} = a^{3} - b^{3} - 3a^{2}b + 3ab^{2}}$$

$$(3 - 5i)^{3} = (3)^{3} - (5i)^{3} - 3(3)^{2}(5i) + 3(3)(5i)^{2}$$

$$\vdots i^{2} =$$

$$(3 - 5i)^{3} = 27 - 125(i)^{3} - 3(45i) + 3(75)(i)^{2}$$

$$\vdots i^{3} =$$

$$(3 - 5i)^{3} = 27 - 125(-i) - 135i + 225(-1)$$

$$(3 - 5i)^{3} = 27 - 225 + 125i - 135i$$

$$(3 - 5i)^{3} = -198 - 10i$$

$$\boxed{Real Part = -198 Ans.}$$

$$\boxed{Imaginary Part = -10i Ans.}$$

 $\therefore i^2 = -1$

 $\therefore i^3 = -i$

The End of Week # 02