Computer Organization & Assembly Language

□ Logic Instructions

Logic Instructions

- To manipulate individual bits
- Binary Value 0 treated as false
- Binary Value 1 treated as true
- In Assembly Language:
 - > AND
 - ► OR
 - > XOR
 - NOT
 - ► TEST

Truth Tables

a	b	a AND b	a OR b	a XOR b
0	0	0	0	0
0	I	0	Ι	I
I	0	0	I	I
I		I	I	0

a	NOT a	
0	Ι	
I	0	

Examples

- 2. 1010 1010 OR 1111 0000 = 1111 1010
- 3. $1010 1010 \times OR 1111 0000 = 0101 1010$
- 4. NOT |0|0|0|0 = 0|0|0|0|

- Syntax
- AND destination, source
- **OR** destination, source
- XOR destination, source
- Destination:
 - Stores result
 - Can be Register or Memory Location
- Source:
 - May be a Constant, Register or Memory Location
- Memory to memory operation not allowed

Effects on Flags

- SF, ZF, PF reflects the result
- AF is undefined
- CF, OF = 0

MASK

- To modify only selective bits in destination, we construct a source bit pattern known as **MASK**.
- To choose mask, use following properties:
 - b AND I = b
 - ▶ bAND 0 = 0
 - b OR | = |
 - b OR 0 = b
 - b XOR 0 = b
 - b XOR I = ~b (complement of b)

Where b represents a bit (0 or 1)

I. The AND instruction:

- May be used to **clear** specific destination bits while preventing the others.
- A 0 mask bit clears the corresponding destination bit.
- A I mask bit preserves the corresponding destination bit.

Example 1

Clear the sign bit of AL while leaving the other bits unchanged.

- Solution:
 - AND AL, 7Fh

Where 7Fh (0111 1111) is the mask.

2. The OR instruction:

- May be used to **set** specific destination bits while preventing the others.

- A I mask bit sets the corresponding destination bit.

- A 0 mask bit preserves the corresponding destination bit.

Example 2

- Set the MSB and LSB of AL while preserving the other bits.
- Solution:
 - OR AL, 81h
- Where 81h (1000 0001) is the mask.

3. The XOR instruction:

- May be used to **complement** specific destination bits while preventing the others.
- A I mask bit complements the corresponding destination bit.
- A 0 mask bit preserves the corresponding destination bit.

Example 3

• Change the sign bit of DX.

- Solution:
 - XOR DX, 8000h
- Where 80h (1000 0000) is the mask.

Converting a Lowercase letter to Uppercase

- Lower case: 61h to 7Ah
- Uppercase: 41h to 5Ah
- Lower to upper case, only clear bit 5. So, the mask is 1101 1111b (0DFh)
 AND DL, 0DFh
- How to convert from upper to lower?

Clearing a Register

MOV AX, 0 ;machine code 3 bytes

OR

SUBAX, AX ;machine code 2 bytes

OR

XOR AX, AX ;machine code 2 bytes

Testing a Register for zero

CMP CX, 0

Is same like:

OR CX, CX ;sets ZF = I if CX is 0

NOT Instruction

- Performs the one's complement operation on the destination.
- Syntax:

NOT destination

- No effect on flags
- Example: Complement the bit in AX:
 NOT AX

TEST Instruction

- Performs an AND operation without changing destination i.e. only status flags updated.
- Syntax:
 - **TEST** destination, source
- Effects on flags:
 - SF, ZF and PF reflects the results
 - AF is undefined
 - CF, OF = 0

- Examining the individual bits: TEST destination, mask
- If destination have all zero, then ZF = I
- The tested bit position is I if and only if corresponding source bit is I
- **Example**: Jump to label BELOW if AL contains an even number.
- Solution: Even numbers have 0 at bit 0 so the mask is 0000 0001

TEST AL, I JZ BELOW