Computer Organization and
Assembly Language

Assembly Instructions



Instructions

» An Instruction iIs a statement that becomes executable
when a program iIs assembled.

» Instructions are translated by the assembler into
machine language.

» The machine code Is then executed by the CPU

» An Instruction contains four basic parts:
- Label (optional)
> Instruction mnemonic (required)
> Operand(s) (required)
o Comment (optional)
» This is the basic syntax:

o [label:] mnemonic [operands] [comment]/



I. Instruction Label

» A label is an identifier that acts as a place
marker for instructions

» A label in the code area of a program must
end with a colon (:) character.

» Code labels are used as targets of jumping
and looping instructions.

» Example
target.
mov ax,bx

N
mp target

\ \M




2. Instruction Mnemonic

» An instruction mnemonic is a short word that
[dentifies an instruction.

» It identifies the type of operation e.g. such as
mov, add, and sub etc.

» Example
> movVv ax,bx




3. Operands

» Assembly language operands can be a
register, memory operand, and constant

expression
» The following table contains sample
operands:
Example Operand Type
96 Constant (immediate value)
2+ 4 Constant expression
eax Register
count Memory




4. Comments

» Comments are an important way for the
writer of a program to communicate
information about the program’s design

» Comments are optional

» Comments can be specified in two ways:
> Single-line comments, beginning with a semicolon
character (;).

> Block comments, beginning with the COMMENT
directive and a user-specified symbol.




Comments Example

» Single line
o inceax ;add ] to EAX

» Block comments
COMMENT !

This line is a comment.

This line is also a comment.
/

.



1 sembly Instruction set

» Before start learning Instructions keep in
mind that:

- Operand types can be:

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH,
DL, DI, SlI, BP, SP.

SREG: DS, ES, SS, and only as second operand: CS.
immediate: 5, -24, 3Fh, 10001101b, etc...

Memory : [0103]

1.

2.
3.
4.




o sembly Instruction set
Writing Rules

1. When two operands are required for an
instruction they are separated by comma.
For example:

- REG, memory
- REG, immediate
- memory, REG

2. When there are two operands, both operands

must have the same size. For example:

- Mov AL, DL
- Mov DX, AX




1 ADD Instruction

» ADD is used for addition of operands

» Operands uesd:

REG, memory

memory, REG

REG, REG

memory, immediate
- REG, immediate

» Algorithm:

- operandl = operandl + operand?2

(0]

(0]

0]

0]



1 ADD example

- Org 100h

- MOV AL, 5 , AL = 5
- ADD AL, -3 , AL = 2
- RET

RET: means Return

.



MOV Instruction

- It Copies operand2 to operandl.
- E.Q
= mov operandl, operand2

- Operands can be;

REG, memory ‘REG, immediate
‘memory, REG *SREG, memory
‘REG. REG ‘memory, SREG
’ *REG, SREG

‘memory, immediate
*SREG, REG

\\\\\\\

Y
\\\\\\



1 Limitations of MOV

2 The MOV instruction cannot:
- Set the values of the CS and IP registers.
- Copy value of one segment register to another

segment register (should copy to general register
first).
> copy immediate value to segment register



1 MOV example

» ORG 100h
- MOV AX, 09
- MOV DS, AX - copy value of AX to DS.
- MOV CL, 'A * CL = 41h (ASCII code).

- MOV CH, 01011111b
» RET




1 SUB Instruction

- SUB is for Subtraction

- Algorithm:

= operand] = operandl - operand?
- Operands can be:

= REG, memory

= memory, REG

= REG, REG

= memory, immediate

= REG, immediate

.



‘ SUB example

» ORG 100h

» MOV AL, 5

» SUBAL, 1 ;AL =4
» RET

.



_ |
JL Instruction

» MUL is for Multiplication

» Algorithm:

-when operand is a byte:
- AX = AL * operand.

-when operand is a word:
- (DX AX) = AX * operand

» Operands can be:

- REG

©_memory
T




1 JL example

» Example:

» Org 100h
- MOV AL, 200 ; AL = 0C8h
- MOV BL, 4
- MUL BL ; AX = 0320h (800)

» RET

.



1 / Instruction

» DIV is for division

» Algorithm:
- when operand is a byte:
- AL = AX / operand
- AH = remainder (modulus)
- when operand is a word:
- AX = (DX AX) / operand
- DX = remainder (modulus)
» Operands can be:
- REG
° memory



1 DIV example

» Example:
- ORG 100h
- MOV AX, 203 ; AX = 00CBh
- MOV BL, 4
- DIVBL ;AL = 50 (32h), AH = 3
o RET

.



1 Boolean Operations

» The set of operators includes the following:

1. NOT: notated as — or ~

2. AND: notated as A

3. OR: notated as Vv

4. XOR: (Exclusive OR) If both operands are
same the result is O.



1 NOT Operator

» NOT Invert each bit of the operand.

» Algorithm:
o if bitis 1 turn it to O.
o if bitis O turnitto 1.

» Operands can be:
- REG
° memory




‘ NOT example

» ORG 100h
- MOV AL, 00011011b
- NOT AL AL =11100100b
- Mov df al
- Mov ah,2
o Int21h

» RET

.



1 AND Operator

» Logical AND between all bits of two operands.
Result is stored in operand].

» These rules apply:

-1 AND 1 =1
-1 ANDO =0
-OAND 1 =0
- 0OAND O =20

» Oprands can be:
- memory, REG, immediate



‘ ample

» Org 100h
- MOV AL, a' AL =01100001b
- AND AL, 1710111116 ;AL =07000001b (A)
- Mov df al
- Mov ah,2
o Int21h

» RET

.



1 . Operator

» Logical OR between all bits of two operands.
Result is

» stored in first operand.
» These rules apply:

-1 ORT =1
-1 OR0 =1
- 0OORT =1
-0OR0=0

» Oprands can be:

. - memory, REG, immediate



‘ ample:

» Org 100h
- MOV AL, A AL =071000001b
- OR AL, 007100000b ;AL =01100001b (‘a"
- Mov dl al
- Mov ah,2
o Int21h

» RET

.



1 XOR Operator

» Logical XOR (Exclusive OR) between all bits of

two
operands. Result is stored in first operand.

» These rules apply:

-1 XOR1 =0
-1 XOR0 =1
- 0 XOR1 =1
-0 XOR0 =0

» Oprands can be:
- memory, REG, immediate

—



1 Example:

» Org 100h
- MOV AL, 00000111b
- XOR AL, 00000010b ; AL = 00000101b
- Mov dl al
- Mov ah,2
o Int21h

» RET




» Thanks

.



