

 An instruction is a statement that becomes executable

when a program is assembled.

 Instructions are translated by the assembler into

machine language.

 The machine code is then executed by the CPU

 An instruction contains four basic parts:
◦ Label (optional)

◦ Instruction mnemonic (required)

◦ Operand(s) (required)

◦ Comment (optional)

 This is the basic syntax:
◦ [label:] mnemonic [operands] [;comment]

 A label is an identifier that acts as a place
marker for instructions

 A label in the code area of a program must
end with a colon (:) character.

 Code labels are used as targets of jumping
and looping instructions.

 Example

target:
mov ax,bx
...
N
jmp target

 An instruction mnemonic is a short word that
identifies an instruction.

 It identifies the type of operation e.g. such as
mov, add, and sub etc.

 Example
◦ mov ax,bx

 Assembly language operands can be a
register, memory operand, and constant
expression

 The following table contains sample
operands:

 Comments are an important way for the
writer of a program to communicate
information about the program’s design

 Comments are optional

 Comments can be specified in two ways:
◦ Single-line comments, beginning with a semicolon

character (;).

◦ Block comments, beginning with the COMMENT
directive and a user-specified symbol.

 Single line
◦ inc eax ; add 1 to EAX

 Block comments

COMMENT !
This line is a comment.

This line is also a comment.

!

 Before start learning Instructions keep in
mind that:
◦ Operand types can be:

1. REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH,
DL, DI, SI, BP, SP.

2. SREG: DS, ES, SS, and only as second operand: CS.

3. immediate: 5, -24, 3Fh, 10001101b, etc...

4. Memory : [0103]

1. When two operands are required for an
instruction they are separated by comma.
For example:
◦ REG, memory

◦ REG, immediate

◦ memory, REG

2. When there are two operands, both operands
must have the same size. For example:
◦ Mov AL, DL

◦ Mov DX, AX

 ADD is used for addition of operands

 Operands uesd:
◦ REG, memory

◦ memory, REG

◦ REG, REG

◦ memory, immediate

◦ REG, immediate

 Algorithm:
◦ operand1 = operand1 + operand2

 Org 100h

 MOV AL, 5 ; AL = 5

 ADD AL, -3 ; AL = 2

 RET

RET: means Return

 It Copies operand2 to operand1.

 E.g

 mov operand1, operand2

 Operands can be;

•REG, immediate
•SREG, memory
•memory, SREG
•REG, SREG
•SREG, REG

•REG, memory
•memory, REG
•REG, REG
•memory, immediate

 The MOV instruction cannot:
◦ Set the values of the CS and IP registers.

◦ Copy value of one segment register to another

segment register (should copy to general register
first).

◦ copy immediate value to segment register

 ORG 100h
◦ MOV AX, 09

◦ MOV DS, AX ; copy value of AX to DS.

◦ MOV CL, 'A' ; CL = 41h (ASCII code).

◦ MOV CH, 01011111b

 RET

 SUB is for Subtraction

 Algorithm:
 operand1 = operand1 - operand2

 Operands can be:
 REG, memory

 memory, REG

 REG, REG

 memory, immediate

 REG, immediate

 ORG 100h

 MOV AL, 5

 SUB AL, 1 ; AL = 4

 RET

 MUL is for Multiplication

 Algorithm:
◦when operand is a byte:
 AX = AL * operand.

◦when operand is a word:
 (DX AX) = AX * operand

 Operands can be:
◦ REG

◦ memory

 Example:

 Org 100h
◦ MOV AL, 200 ; AL = 0C8h

◦ MOV BL, 4

◦ MUL BL ; AX = 0320h (800)

 RET

 DIV is for division

 Algorithm:
◦ when operand is a byte:

 AL = AX / operand

 AH = remainder (modulus)

◦ when operand is a word:

 AX = (DX AX) / operand

 DX = remainder (modulus)

 Operands can be:
◦ REG

◦ memory

 Example:
◦ ORG 100h

◦ MOV AX, 203 ; AX = 00CBh

◦ MOV BL, 4

◦ DIV BL ; AL = 50 (32h), AH = 3

◦ RET

 The set of operators includes the following:

1. NOT: notated as ￢ or ~

2. AND: notated as ∧

3. OR: notated as ∨

4. XOR: (Exclusive OR) If both operands are
same the result is 0.

 NOT Invert each bit of the operand.

 Algorithm:
◦ if bit is 1 turn it to 0.

◦ if bit is 0 turn it to 1.

 Operands can be:
◦ REG

◦ memory

 ORG 100h
◦ MOV AL, 00011011b

◦ NOT AL ; AL = 11100100b

◦ Mov dl,al

◦ Mov ah,2

◦ Int 21h

 RET

 Logical AND between all bits of two operands.
Result is stored in operand1.

 These rules apply:
◦ 1 AND 1 = 1

◦ 1 AND 0 = 0

◦ 0 AND 1 = 0

◦ 0 AND 0 = 0

 Oprands can be:
◦ memory, REG, immediate

 Org 100h
◦ MOV AL, 'a' ; AL = 01100001b

◦ AND AL, 11011111b ; AL = 01000001b ('A')

◦ Mov dl,al

◦ Mov ah,2

◦ Int 21h

 RET

 Logical OR between all bits of two operands.
Result is

 stored in first operand.

 These rules apply:
◦ 1 OR 1 = 1

◦ 1 OR 0 = 1

◦ 0 OR 1 = 1

◦ 0 OR 0 = 0

 Oprands can be:
◦ memory, REG, immediate

 Org 100h
◦ MOV AL, 'A‘ ; AL = 01000001b

◦ OR AL, 00100000b ; AL = 01100001b ('a')

◦ Mov dl,al

◦ Mov ah,2

◦ Int 21h

 RET

 Logical XOR (Exclusive OR) between all bits of
two
operands. Result is stored in first operand.

 These rules apply:
◦ 1 XOR 1 = 0
◦ 1 XOR 0 = 1
◦ 0 XOR 1 = 1
◦ 0 XOR 0 = 0

 Oprands can be:
◦ memory, REG, immediate

 Org 100h
◦ MOV AL, 00000111b

◦ XOR AL, 00000010b ; AL = 00000101b

◦ Mov dl,al

◦ Mov ah,2

◦ Int 21h

 RET

 Thanks

