
CSC 222: Computer Organization

& Assembly Language

6 – Interrupt Driven IO

Outline

 Interrupts

 Input Output Instructions

 Sample Programs

References

 Chapter 3, 4, Ytha Yu and Charles Marut, “Assembly Language

Programming and Organization of IBM PC”

 Chapter 3,Assembly Language for Intel Based-Computers

2

Interrupts

Interrupts – Changing Program Flow

 Mechanism by which other modules (e.g. I/O) may interrupt

normal sequence of processing

 Program

 e.g. overflow, division by zero

 Timer

 Generated by internal processor timer

 Used in pre-emptive multi-tasking

 I/O

 from I/O controller

 Hardware failure

 e.g. memory parity error

4

Interrupt Cycle

 Added to instruction cycle

 Processor checks for interrupt

 Indicated by an interrupt signal

 If no interrupt, fetch next instruction

 If interrupt pending:

 Suspend execution of current program

 Save context

 Set PC to start address of interrupt handler routine

 Process interrupt

 Restore context and continue interrupted program

5

Transfer of Control via Interrupts

6

Instruction Cycle with Interrupts

7

Instruction Cycle (with Interrupts) - State Diagram

8

Multiple Interrupts

 Disable interrupts

 Processor will ignore further interrupts whilst processing one

interrupt

 Interrupts remain pending and are checked after first interrupt

has been processed

 Interrupts handled in sequence as they occur

 Define priorities

 Low priority interrupts can be interrupted by higher priority

interrupts

 When higher priority interrupt has been processed, processor

returns to previous interrupt

9

Multiple Interrupts - Sequential

10

Multiple Interrupts – Nested

11

Input and Output Instructions

I/O Ports

 I/O Devices are connected to the computer through I/O

circuits.

 Each circuit contains several registers: I/O Ports

 Some ports used for data while others are used for

commands.

 Transfer Points between CPU and I/O device.

 Each I/O port:

 has an address “I/O Address”

 Is connected to the bus system

 I/O Address can only be used with Input / Output instructions.

13

I/O Port Addresses

 The 8086/8088 supports 64 KB (16 bit) of I/O Port

 Usage vary among computer models

 Some Common I/O Ports:

14

Port Address Description

20h-21h Interrupt Controller

60h-63h Keyboard Controller

320h-32Fh Hard Disk

I/O Instructions

 CPU communicates with the peripherals through I/O registers

called I/O Ports.

 Two instructions to access ports directly.

 IN

 OUT

 But most application programs do not use IN and OUT:

 Port addresses vary among computer models

 Easier to program by using services routines

 Categories of I/O Service Routines

 BIOS

 Stored in ROM and interact directly with I/O ports.

 DOS

 More complex tasks like printing a character string
15

The INT (Interrupt) instruction

 Syntax:

INT interrupt_number

 Where interrupt_number specifies a routine.

 Examples

INT 16h

 Invokes a BIOS routine that performs keyboard input.

INT 21h

 Invoke DOS functions depending on function number present in AH

register.

16

Function No. Routine

1 Single-key input

2 Single-character output

9 Character string output

Single-Key Input

 AH = 1

 AL = ASCII code if character key is pressed

= 0 if non-character key is pressed

17

MOV AH,1

INT 21h

Single-character output

 AH = 2

 DL = ASCII code of the display character or control

character

 AL = ASCII code of the display character or control

character

18

MOV AH,2

MOV DL, ‘?’

INT 21h

Control Characters

19

ASCII Code (Hex) Symbol Function

7 BEL Beep (sound a to e)

8 BS Backspace

9 HT Tab

A LF Line feed (new line)

D CR Carriage return (start of current line)

Sample Programs

Input & Output

 In 8086 assembly language, we use a software interrupt

mechanism for I/O.

 An interrupt signals the processor to suspend its current

activity (i.e. your running program) and to pass control to an

interrupt service program (i.e. part of the operating system).

 A software interrupt is one generated by a program (as

opposed to one generated by hardware).

 The 8086 INT instruction generates a software interrupt.

 For I/O and some other operations, the number used is 21h.

21

Character Input

To read a character from the keyboard:

MOV AH, 1

INT 21h

; character is stored in AL

22

Character Output

To display the character ’a’ on the screen:

MOV DL, ‘a‘

MOV AH, 2

INT 21h

23

Reading and displaying a character:

MOV AH, 1

INT 21h

MOV DL,AL

MOV AH, 2

INT 21h

24

title Hello World Program (hello.asm)

; This program displays “Hello, world!”

.model small

.stack 100h

.data

message db “Hello, world!”,0dh,0ah,’$’

.code

main proc

mov ax,@data

mov ds,ax

mov ah,9

mov dx,offset message

int 21h

mov ax,4C00h

int 21h

main endp

end main

Program 1: Hello World!

25

title Hello World Program (hello.asm)

; This program displays “Hello, world!”

.model small

.stack 100h

program title (comment)

comment line

memory model

set the stack size

26

.data

message db “Hello, world!”,0dh,0ah,’$’

.code

main proc

mov ax,@data

mov ds,ax

mov ah,9

mov dx,offset message

int 21h

mov ax,4C00h

int 21h

main endp

end main

starts the data segment

starts the code segment

sets DS to the offset of the

data segment

calls DOS display function 9

halts program

27

Program 2: Echo

TITLE MY First Program

.MODEL SMALL

.STACK 100H

.CODE

;display prompt

MOV AH, 2 ;display character function

MOV DL, '?' ;character is '?'

INT 21H ;display it

;input a character

MOV AH, 1 ;read character function

INT 21H ;character in AL

MOV BL, AL ;save it in BL

28

Contd..

;go to a new line

MOV AH, 2

MOV DL, 0DH

INT 21H

MOV DL, 0AH

INT 21H

;display character

MOV DL, BL

INT 21H

;return to DOS

MOV AH, 4CH

INT 21H

29

Program 3: Add

.DATA

A DW 2

B DW 5

SUM DW ?

.CODE

;add the numbers

MOV AX, A

ADD AX, B

MOV SUM, AX

;exit to DOS

MOV AX, 4C00H

INT 21H

30

Program 4: Lower To Upper case
TITLE Case Conversion Program

.MODEL SMALL

.STACK 100H

.DATA

CR EQU 0DH

LF EQU 0AH

MSG1 DB 'Enter a Lowe Case Letter: $'

MSG2 DB 0DH, 0AH, 'In Upper Case It is: '

CHAR DB ?,'$‘

.CODE

;initialize DS

MOV AX, @DATA ;get data segment

MOV DS, AX ;initialize DS

31

Contd..

;print user prompt

LEA DX, MSG1 ;get first message

MOV AH, 9 ;display string function

INT 21H ;display first message

;input a character and convert to upper case

MOV AH, 1 ;read character function

INT 21H ;read snall letter into AL

SUB AL, 20H ;convert it into uppercase

MOV CHAR, AL ;and store it

;display on the next line

LEA DX, MSG2 ;get second message

MOV AH, 9 ;display string function

INT 21H ;display message and upper case letter in front

;
32

