
Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
1

Discipline: BS (IT) 3rd Semester
Subject: Data Structure & Algorithms [NEW Course]
Notes: From Week No. 01 – 06
Prepared by: ARSHAD IQBAL, Lecturer (CS/IT), ICS/IT - FMCS,

The University of Agriculture, Peshawar

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
2

Course Objectives

Welcome to the course of data structure.

Data structure is very important subject as the topics covered in it, will be encountered by you

again and again in the future courses. By completing this course, you will be able to understand

the basics of Data Structures. You will also know the elementary Data Structures. At the end of

this course you will be able to implements these data structure techniques using any

programming language like C++, JAVA etc.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
3

Week No. 01: DATA STRUCTURE

Introduction to Data: Data is a value or set of values OR
Data are facts that concern with people, person, place, event,
objects etc.

Data Item: A single unit of value in data is called data item e.g. Name, Address, Roll No. etc.

Group Data Item: The data items divided into sub items are called Group data items
e.g. Name is divided into First name, Middle name, Last name so name is a group data item.

Elementary Data Item: The data items that are not divided into sub items are called
Elementary data items e.g. Roll Number which is not sub divided so Roll Number is an
elementary item.

Information: Processed data that can be used in decision making is called information
e.g. a list of student marks is data but when it is processed according to ascending order of
marks, it become information that who has topped and who is failed.

Field: A group of related characters to represent some unit of information is called a field
e.g. person name is a field. Field means a column. There are three types of fields:

i. Numeric Field: Weight is 50 Kg.
ii. Alphabetic Field: Name is Ali, Asad etc.
iii. Alpha Numeric Field: Address is H. No. 77, Peshawar.

Key Field: A key field is used to identify the record for location & processing purposes.
For example, in a sale ledger file the key field might be the customer code, in a payroll file the
key field might be employee number, in student file the key field might be roll no. etc.

Record: Fields are grouped together to provide information about a single entity
(object/unit/thing/person) is called record. Record means a row e.g. student record.

Roll No. Name DOB Marks
35 Fahad 10th Aug. 1986 485

File: A file is a named collection of records means records are grouped together to provide a
complete information about all entities. File means a table e.g. the file name may be student
and it will contain four records e.g.

Roll No. Name DOB Marks
35 Fahad 10th Aug. 1986 485
14 Asad 21st March 1984 415
30 Iqbal 22nd April 1982 420
40 Wasim 23rd June 1985 430

Data Structure: Structure means particular way of data to store in computer memory.

So, data structure means to organize the data in computer memory.

OR: the way in which data is efficiently stored, processed and retrieved is called data structure.

OR: Data Structure simply means a structure that can be used to store a given collection of
data in computer memory. OR Data Structure is a named group of data of different data types
which can be processed as a single unit.

The representation of data structure in computer memory (i.e. RAM) is known
as Storage Structure and representation of data structure in auxiliary memory
(i.e. Hard disk) is known as File Storage.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
4

Types of Data Structure:

1. According to Nature of Size:
i. Static Data Structure.
ii. Dynamic Data Structure.

i. Static Data Structure: A data structure is said to be static if data can
store up to a fix number e.g. Int, Float, Char, Array etc.

ii. Dynamic Data Structure: As the name shows a dynamic data structure
is that data structure which allows the programmer to change its size
during program execution to add or delete memory space accordingly
e.g. Link list, Tree, Graph etc.

2. According to its Occurrence (existence):

i. Linear Data Structure.
ii. Non - Linear Data Structure.

i. Linear Data Structure: In linear data structure, the data is stored
in consecutive memory location or data is stored in a sequential form
e.g. Array, Link list, Queue, Stack etc.

ii. Non - Linear Data Structure: In non - linear data structure, the data is
stored in non - consecutive memory location or data is stored in
a non - sequential form e.g. Tree, Graphs etc.

Physical and Logic Data Structure: The physical data structure refers to
the physical arrangement of the data on the secondary storage device, usually disk. Typically,
physical data structure concerns with specialists who design DBMSs. Analysts, programmers,
and users are generally less concerned with the physical structure than the logical structure.
The logical data structure concerns how the data "seem" to be arranged and the meanings of
the data elements in relation to one another. For example, a data file is a collection of information
stored together. This is its logical structure. However, physically a file could be stored on a disk
in several scattered pieces.

Flow Chart of Data Structure:

Data Structure

Logical Data Structure Physical Data Structure

Int Float Char Linear Data Structure Non-Linear Data Structure

List Tree Graph

Linear List Linked List

Array Queue Stack One Way Two Way Circular

DeQueue Circular

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
5

Week No. 02: ALGORITHM

Introduction to Algorithm: An algorithm is a finite step-by-step list/procedure of well-defined
instructions for solving a particular problem. The representation of data structure in computer
memory (i.e. RAM) is known as Storage Structure and representation of data structure in
auxiliary memory (i.e. Hard disk) is known as File Storage.

The term algorithm refers to the storage structure. An algorithm must satisfy the following
criteria:

i. Input: There are zero or more values, which are externally supplied.

ii. Output: At least one quantity is produced as an output.

iii. Definite: Each step or instruction must be clear from ambiguity.

iv. Effectiveness: Each step or instruction must be sufficiently basic (simple) and easy so

that algorithm become effective.

v. Finiteness: It means that algorithm must be terminated in the finite number of
steps.

Algorithmic Notations: The general body of algorithm can be drowning as:

1. Name of Algorithm: Every algorithm must have a name. The name of the algorithm
will be written in capital letters.

2. Introductory Comments: The algorithm name is followed by a brief description of
the tasks that algorithm performs and any assumption that has been made in it. The
description gives the names and types of the variables used in algorithm.

3. Steps: The algorithms have many steps. Each step is begins with a phrase enclosed in
square brackets ([]) which includes task to be performed or the action to be taken.

4. Comments: Comments are added to help the reader for understanding that step better.
Comments specify no action and are enclosed only for explanation.

5. Exit: At the last of each algorithm the word FINISH, EXIT or RETURN is written
which denotes the end of the algorithm.

Example/ General syntax: (1) Name of Algorithm

 (2) Introductory Comments
 ALGORITHM: ABC (X, Y, Z)

 Step01: [INITIALIZATION]
 . .
 (3) Steps . . (4) Comments
 . .
 Step05: [FINISH]
 (5) Exit/Finish
 EXIT

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
6

Control Structure of Algorithms:

Algorithms are more easily understood if they mainly use self - contained modules and three
types of logic or flow of control, which are given below:

1. Sequence Logic or Sequential Flow
2. Selection Logic or Conditional Flow
3. Iteration Logic or Repetitive Flow

1. Sequence Logic or Sequential Flow:

Sequence Logic means Sequential Flow. In sequential flow modules are executed in sequence.
The sequence may be presented by means of numbered steps or by the order in which the
modules are written. Most processing even of complex problem will generally follow this
element flow pattern. See the following figure 2.1.

 Figure 2.1: Sequence Logic

2. Selection Logic or Conditional Flow:

Selection Logic uses a number of conditions which lead to a selection of one out of several
alternative modules. The structures which implement this logic are called conditional structures
or IF structures. For clarity, it will frequently indicate the end of such a structure by the
statement: [End of If structure] or some equivalent.

Types: There are three types of conditional structures/IF structure.

I. Single Alternative: This structure has the form:

If condition, then:

 [Module A]

[End of If structure]

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
7

The logic of this structure is shown in the following figure 2.2. If the condition holds/true then
Module A, which may consist of one or more statements, is executed. Otherwise Module A is
skipped and control transfers to the next step of the algorithm.

Figure 2.2: Single Alternative

II. Double Alternative: This structure has the form:

If condition, then:

 [Module A]

Else:

 [Module B]

[End of If structure]

The logic of this structure is shown in the following figure 2.3. As indicated by the flow chart if
the condition holds/true then Module A is executed. Otherwise Module B is executed.

 Figure 2.3: Double Alternative

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
8

III. Multiple Alternative: This structure has the form:

If condition (1), then:

 [Module A1]

Else if condition (2), then:

 [Module A2]

 .

 .

 .

Else if condition (M), then:

 [Module AM]

Else:

 [Module B]

 [End of If structure]

The logic of this structure allows only one of the modules to be executed. Specifically, either the
module which follows the first condition which holds/true is executed or the module which
follows the final Else statement is executed.

3. Iteration Logic or Repetitive Flow:

Iteration Logic refers to either of two types of structures which involving loops, and that’s why
it is also called Repetitive Flow. Each type of structure begins with a Repeat statement and is
followed by a module, called the body of the loop. For clarity it will indicate the end of the
structure by the statement: [End of loop] or some equivalent.

Types: There are two types of Iteration Logic/Repetitive Flow:

I. Repeat - for loop:

The repeat – for loop uses an index variable, such as K, to control the loop. The loop will
usually have the form:

 Repeat for K = R to S by T:

 [Module]

[End of loop]

The logic of this is shown in the following figure 2.4. Here R is called the initial value, S the
end value or test value, and T the increment. Observe that the body of the loop is executed
first with K = R, then with K = R + T, then with K = R + 2T, and so on.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
9

The cycling ends when K > S. The following flow chart assumes that the increment T is positive,
if T is negative, so that K decreases in value, then cycling ends when K < S.

 Figure 2.4: Repeat – for structure

II. Repeat - while loop:

The repeat – while loop uses a condition to control the loop. The loop will usually have the
form:

 Repeat while condition:

 [Module]

 [End of loop]

The logic of this structure is shown in the following figure 2.5. Observe that the cycling
continues until the condition is false. We emphasize that there must be a statement before the
structure that initializes the condition controlling the loop, and in order that the looping may
eventually cease, there must be a statement in the body of the loop that changes the condition.

 Figure 2.5: Repeat – while structure

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
10

Introduction to the Basic Operations of Data Structure:

The data appearing in data structures are processed by means of certain operations.

1. Insertion: The process of adding a new element in a data structure is called insertion

OR inserting a new element or data item to a given data structure is called
insertion.

2. Deletion: Removing an element or data item from a given data structure is called

deletion. OR removing a record from the data structure is called deletion.

3. Searching: The process of finding out a data item in a given data structure is called
searching. OR finding the location of record with a given key value or
finding the locations of all records that satisfy one or more conditions.

4. Traversing: Accessing each record or data item in a data structure exactly once so that
data items in the record can be processed is called traversing or visiting.

5. Sorting: Arranging the elements of a data structure in some particular order is

called sorting or arranging the record in some logical order is called
sorting.

6. Merging: Combing the records from two different files into a single sorted file is

called merging.

Types:
a. Copying: Combing some portions of two different files into a

single file is called copying.

b. Concatenation: To combine two different files into one file is called
concatenation.

7. Creation: The process by which the data structure is created is called creation.

8. Destruction: The process through which we destroy a created data structure is called

destruction.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
11

Week No. 03: ONE-DIMENSIONAL ARRAY

Introduction to Array:

Array is the name of the consecutive memory loacations that all have same name and same type.
OR

Array is a finite number of homogeneous data having a common name, a unique index, and
stored in consecutive memory location in the computer memory.

By finite number mean that size of the array should be known. By homogenous mean that the
data should be of the same type. By consecutive mean that the data item of the array stored one
after the other in computer memory.

Types: There are two types of array:

1. One Dimensional Array
2. Two Dimensional Array

One Dimensional Array:

The array in which there is only one dimension is called one dimensional array.
One dimensional array is also called a list or a linear array it consist of only one row or one
column e.g. Int x [5];

Length or size of the One Dimensional Array:

Total number of elements in the ODA is called the length of the One Dimensional Array.

Formula:

Length = UB – LB + 1;

Where UB represents the upper bound of the one dimensional array and LB is
lower bound of the one dimensional array.

Representation of One-Dimensional Array in computer memory:

In computer memory, arrays are usually mapped into a vector. A one-dimensional array does
not cause any problem in mapping as it is already in the form of a vector. And their elements
have stored in same sequence in which they are given. E.g. Int arr [4] = {10, 20, 30, 40}.
The elements are stored in memory as follow:

 0 1 2 3
10 20 30 40

 1010 1012 1014 1016

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
12

Accessing One Dimensional Array by Dope Vector method:
The dope vector method is an efficient way to access each element of an array. This method
uses the start address and subscript number (index number) of the element for accessing
using the following formula:

 MA (i) = SA + (i-1) * w (If array started from index value 1)
 OR

MA (i) = SA + i * w (If array started from index value 0)

MA = Memory Address of the element
SA = Start Address
i = Subscript number (index number) of an element to be accessed
w = the word length, for integer w = 2, for float w = 4, for char w = 1

For example:

 1 2 3 4
10 20 30 40

 1010 1012 1014 1016

Find the Memory Address of an element at position i = 4?

 MA (i) = SA + (i-1) * w

Where: SA = 1010 & w = 2

MA (4) = 1010 + (4-1) * 2
MA (4) = 1010 + 3 * 2
MA (4) = 1010 + 6
MA (4) = 1016

The value at address 1016 is 40.

Algorithm for traversing One Dimensional Array:

Traversing: Traversing of array means visiting each element of the array. The following
algorithm is used to traverse an array.

ALGORITHM: TRAVERSING (LB, UB, LA, K)

Here LA is a linear array with lower bound (LB) and upper bound (UB)
and K is a counter variable. The algorithm is used to traverse the LA.

Step # 01: [Initialize counter variable]
 Set K: = LB
Step # 02: [Start loop to traverse]
 Repeat step 3 & 4 while (K<=UB)
Step # 03: [Visit element]
 Apply PROCESS to LA [K]
Step # 04: [Increase counter variable]
 Set K: = K + 1
 [End of Loop]
Step # 05: [Finish]
 Exit

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
13

TRAVERSING ALGORITHM using C++:

#include<iostream.h>
#include<conio.h>
void main ()
{
 clrscr ();
 int LA [50], LB, UB, K;
 cout<<"Enter Upper Bound of the Array: UB = ";
 cin>>UB;
 cout<<endl<<"Enter Lower Bound of the Array: LB = ";
 cin>>LB;
 cout<<endl<<"Enter your Elements in the Array:"<<endl<<endl;
 for (K=0; K<=UB; K++)
 cin>>LA [K];

 // Start TRAVERSING ALGORITHM
 cout<<endl<<"Traversing Elements of the Array Starting from LB to UB: ";
 K = LB;
 while (K<=UB)
 {
 cout<<LA [K]<<" ";
 K = K+1;
 }
 // End of TRAVERSING ALGORITHM

 getch ();
}

Algorithm for insertion and deletion in One Dimensional Array:

Insertion: Insertion refers to the operation of adding another element to the collection of
linear. If an element inserts at the end of the array, it is easy. But when an element inserts at
first/middle location then the elements must be moved downward. The following algorithm is
used to insert an element.

ALGORITHM: INSERTION (A, K, N, I, ITEM)

This algorithm is used to insert an element in array A at Kth location. N is
the total number of filled memory location and I is the counter variable.

 Step#01: [Initialize the counter variable]
 I = N
 Step#02: [Start loop to move the elements]
 Repeat step 3 & 4 while (I > K) or (I > = K) (for 1 index number)

 Step#03: [Moving element]
 A [I] = A [I–1] or A [I + 1] = A [I] (when array started from 1 index number)
 Step#04: [Decrement the counter variable]
 I = I – 1
 [End of Loop]
 Step#05: [Add new element]
 A [K] = ITEM
 Step#06: [Add memory location]
 N = N + 1
 Step#07: [Finish]

 Exit

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
14

INSERTION ALGORITHM USING C++:

#include<iostream.h>
#include<conio.h>
void main ()
{

clrscr ();
 int A [100], I, K, N, ITEM;
 cout<<"Enter Total number of elements in array: N = ";
 cin>>N;
 cout<<endl<<"Enter N number of elements into ODA:"<<endl<<endl;
 for (I=0; I<N; I++)
 cin>>A[I];
 cout<<endl<<"Elements in ODA: ";
 for (I=0; I<N; I++)
 cout<<A[I]<<" ";
 cout<<endl<<endl<<"Enter the element to insert into ODA: ";
 cin>>ITEM;
 cout<<endl<<"Enter position of the element to be inserted: ";
 cin>>K;

 // Start INSERTION ALGORITHM

 I = N;
 while(I>K)
 {
 A [I] = A [I-1];
 I = I-1;
 }

A[K] = ITEM;
 N = N+1;
cout<<endl<<"Total number of elements in array after insertion of an element: "<<N<<endl;

 // End of Insertion Algorithm

 cout<<endl<<"Array after insertion of an element: ";

 for (I=0; I<N; I++)
 cout<<A[I] <<" ";

 getch ();
}

Deletion: Deletion refers to the operation of removing the element from a linear array A.
Deleting the end element is not difficult but deleting the first/middle element would require that
each subsequent element moved one location upward in order to fill up the array.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
15

ALGORITHM: DELETION (A, K, N, I)
The algorithm is used to delete an element from Kth location of an array A.
N is the total number of filled memory locations and I is
the counter variable.

Step#01: [Initialize the counter variable]

 I = K
Step#02: [Delete the element]
 Delete A [K]
Step#03: [Starting loop]
 Repeat step 4 & 5 while (I < N - 1) or (I < = N - 1) (for 1 index number)
Step#04: [Moving element]
 A [I] = A [I + 1]
Step#05: [Increment the counter variable]
 I = I + 1
 [End of Loop]
Step#06: [Remove memory location]
 N = N – 1
 A [N] = -1 // Assign Garbage value
Step#07: [Finish]
 Exit

DELETION ALGORITHM USING C++:
#include<iostream.h>
#include<conio.h>
void main ()
{
 clrscr ();
 int A [200], I, K, N;
 cout<<"Enter Total number of filled memory locations in array: N = ";
 cin>>N;
 cout<<endl<<"Enter N number of elements into Array:"<<endl<<endl;
 for (I=0; I<N; I++)
 cin>>A[I];
 cout<<endl<<"Elements in Array: ";
 for (I=0; I<N; I++)
 cout<<A[I]<<" ";
 cout<<endl<<endl<<"Enter position of an element to be deleted: k = ";
 cin>>K;

// Start DELETION ALGORITHM
I = K;
cout<<endl<<"Element to be deleted at position "<<I<<": "<<A[I]<<endl<<endl;
while (I<N-1)
{
 A [I] = A [I+1];
 I = I+1;
}
N = N-1;
A [N] = -1;

// End of DELETION ALGORITHM

cout<<"Total number of elements in array after deletion an element: "<<N<<endl<<endl;
cout<<"Array after deletion of an element:"<<endl;
for (I=0; I<=N; I++)
cout<<A[I]<<" ";
getch ();

}

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
16

Week No. 04: TWO-DIMENSIONAL ARRAY

Introduction to Two-Dimensional Array:
Two dimensinal array has two dimensions which consist on both rows and columns.
A two dimensional array is declared by giving two indexed values in square brackets.
The first indexed value represents the total number of rows and the second represents
the total number of columns. E.g. Int arr [5][5];

A two dimensional array is called matrix in mathematics and table in the database.

Two Dimensional Array Program-01:

#include<iostream.h>
#include <conio.h>
void main()
{
 clrscr ();
 int i, j;
 int A [3][3]={{10,20,30},{40,50,60},{70,80,90}};
 cout<<"Two Dimensional Array Elements: ";
 for (i=0; i<3; i++)
 for (j=0; j<3; j++)
 cout<<" "<<A[i][j];
 getch();
}

Two Dimensional Array Program-02:

#include<iostream.h>
#include <conio.h>
void main()
{
 clrscr ();
 int i, j;
 int A [3][3];
 cout<<"Enter elements into Two Dimensional Array: "<<endl<<endl;
 for (i=0;i<3;i++)
 for (j=0;j<3;j++)
 cin>>A[i][j];
 cout<<endl<<"Two Dimensional Array Elements: ";
 for (i=0; i<3; i++)
 for (j=0; j<3; j++)
 cout<<" "<<A[i][j];
 getch ();
}

Size or Length of Two Dimensional Array:
If m is the number of rows and n is the number of columns then the formula for
the Size of Two Dimensional Array is as under:

Length or Size = m × n

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
17

Representation of Two-Dimensional Array in computer memory:
When two-dimensional array is stored in computer memory, it is first mapped into
a single vector because two-dimensional array is logically represented in rows and columns
but physically mapped into computer memory in vector form. It is either mapped in
a Row-by-Row Vector or a Column-by-Column Vector.

 Row-by Row Vector Method
 Column-by-Column Vector Method

 Row-by Row Vector Method or Row-by-Row Major Order:
In row-by-row major order, first row is stored/mapped, then second row and so on.

For example:

 1 3 5
 A = 2 4 6
 7 8 9

Can be mapped row-by-row major order as follows:

 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
1 3 5 2 4 6 7 8 9

 Column-by-Column Vector Method:
In column-by column or column major order, first stored/mapped the first column
then the second column and so on….

For example:

 1 3 5
 A = 2 4 6
 7 8 9

Can be mapped column-by-column major order as follows:

 (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)
1 2 7 3 4 8 5 6 9

Accessing Two-Dimensional Array by Dope Vector method:
The two-dimensional array is stored into two types of vectors either row-by-row or column-
by-column. A single two-dimensional array will have two different representations in
computer memory according to the above-mentioned techniques.

Row Major Order (Row-by-Row):
Row Major Order (Row-by-Row) mapping an element can be accessed as:

 MA (i, j) = SA + {n (i - 1) + (j – 1)} * w

MA = Memory Address of the element
i = No. of Row of elements to be accessed
j = No. of Column of elements to be accessed
SA = Start Address
n = Total number of Columns
w = the word length, for integer w = 2, for float w = 4, for char w = 1

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
18

For example:

 1 3 5
 A = 2 4 6
 7 8 9

Can be mapped row-by-row major order as follows:

 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) (3,1) (3,2) (3,3)
1 3 5 2 4 6 7 8 9

 1010 1012 1014 1016 1018 1020 1022 1024 1026

Find the Memory Address of an element at position (3, 2)?

 i = 3, j = 2, SA = 1010, n = 3, w = 2

 MA (i, j) = SA + {n (i - 1) + (j – 1)} * w
 MA (3, 2) = 1010 + {3 (3 - 1) + (2 – 1)} * 2

MA (3, 2) = 1010 + {3 (2) + (1)} * 2
MA (3, 2) = 1010 + {6 + 1} * 2
MA (3, 2) = 1010 + {7} * 2
MA (3, 2) = 1010 + 14
MA (3, 2) = 1024

Thus, the value at the address 1024 is 8.

Column Major Order (Column-by-Column):

Column Major Order (Column-by-Column) mapping an element can be accessed as:

MA (i, j) = SA + {m (j - 1) + (i – 1)} * w

MA = Memory Address of the element
i = No. of Row of elements to be accessed
j = No. of Column of elements to be accessed
SA = Start Address
m = Total number of Rows
w = the word length, for integer w = 2, for float w = 4, for char w = 1

For example:

 1 3 5
 A = 2 4 6
 7 8 9

Can be mapped Column-by-Columns major order as follows:

 (1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)

1 2 7 3 4 8 5 6 9
 1010 1012 1014 1016 1018 1020 1022 1024 1026

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
19

Find the Memory Address of an element at position (2, 3)?

 i = 2, j = 3, SA = 1010, m = 3, w = 2

 MA (i, j) = SA + {m (j - 1) + (i – 1)} * w

MA (2, 3) = 1010 + {3 (3 - 1) + (2 – 1)} * 2
MA (2, 3) = 1010 + {3 (2) + (1)} * 2
MA (2, 3) = 1010 + {6 + 1} * 2
MA (2, 3) = 1010 + {7} * 2
MA (2, 3) = 1010 + 14
MA (2, 3) = 1024

Thus, the value at the address 1024 is 6.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
20

Week No. 05: SEARCHING

Introduction to Searching:

Computer systems are often used to store large amounts of data from which individual records
are retrieved according to some search criteria.

The process of finding a specific data item or record from a list is called searching.

OR

It is the process by which can find the specific location of a given item in a list.

OR

Searching is a technique of finding an element from the given list or a set of elements like
arrays, list or trees.

If the item exists in the given list, then search is said to be successful otherwise if the element is
not found in the given list then search is said to be unsuccessful.

For example: Finding a telephone number in a telephone directory is called searching.

Internal search: The search in which the whole list resides in the main memory is called

internal search.

External search: The search in which most of the list resides in the secondary memory is

called external search.

In this searching we will concentrate on internal searching. The complexity of any searching
method is determined from the number of comparisons performed among the collected elements
in order to find the elements. The time required for operation is depends on the complexity of the
operation or algorithm.

There are some cases in which an element can be found:

 Best Case: The best case is that in which the element is found during the first

comparison.

 Worst Case: The worst case is that in which the element is found only at the end or the
last comparison or not found.

 Average Case: The average case is that in which the element is found in comparisons
more than best case but less than worst case.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
21

Types of Searching:

1. Linear Search
2. Binary Search

1. Linear Search:
Linear Search is also called sequential search. It is the simplest way for finding an element in a
list. In Linear Search, the elements find sequentially in a list, no matter whether the list is
sorted or unsorted.

In case of sorted list, the search is started from 1st element and continuous until the element is
found or the element whose value is greater than the value being searched.

In case of unsorted list, the search is started from 1st location and continuous until the element
is found or the end of the list is reached.

Linear Search is a very slow process. It is used for small amounts of data. This method is not
recommended for large amount of data.

Example: Sorted Array

Data

 A [13] =

Find the ITEM = 80?

1. A [0] = 10 comparison with 1st element, since 80 > 10 then

2. A [1] = 20 comparison with 2nd element, since 80 > 20 then

3. A [2] = 30 comparison with 3rd element, since 80 > 30 then

4. A [3] = 40 comparison with 4th element, since 80 > 40 then

5. A [4] = 50 comparison with 5th element, since 80 > 50 then

6. A [5] = 60 comparison with 6th element, since 80 > 60 then

7. A [6] = 70 comparison with 7th element, since 80 > 70 then

8. A [7] = 80 comparison with 8th element, since 80 = 80 thus

The search is successful, the ITEM is found at location 7.

 0 1 2 3 4 5 6 7 8 9 10 11 12
10 20 30 40 50 60 70 80 90 100 110 120 130

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
22

Algorithm for Linear Search: This algorithm is used for linear searching. ITEM is to be
searched in a linear array A having N numbers of elements. LOC is variable which store the
location in case of successful search and ‘I’ is a counter variable.

Algorithm for Sorted Array: LINEAR SEARCH (A, LOC, I, N, ITEM)

Step 1: [Initialization]
 I = 0 and LOC = -1

Step 2: [Starting Loop to Search]
 Repeat step 3 & 4 ... While (I < N)

Step 3: [Comparing given element]
 If (ITEM == A [I]) then

LOC: = I
Break

(These statements will not be included for unsorted array) Else if (ITEM < A [I]) then
 Break
 [End of IF Structure]

Step 4: [Increment counter variable]
 I = I+1
[End of Loop]

Step 5: [Display Result]
 If (LOC == -1) then

Write (“Element is not Found”)
 Else:

 Write (“Search is Successful”)
 Write (“ITEM is found at Location”, LOC)
 [End of IF Structure]
Step 6: [Finish]
 Exit

LINEAR SEARCH ALGORITHM USING C++:

#include<iostream.h>
#include<conio.h>
void main ()
{

clrscr();
int A[50], I, LOC, N, ITEM;
cout<<"Enter total number of elements in array: N = ";
cin>>N;
cout<<endl<<"Enter elements into array:"<<endl;
for(I=0;I<N;I++)
 cin>>A[I];
cout<<endl<<"Elements in array:";
for(I=0;I<N;I++)
 cout<<" "<<A[I];
cout<<endl<<endl<<"Enter an element to find: ";
cin>>ITEM;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
23

// STARTING LINEAR SEARCH ALGORITHM

LOC=-1;
I=0;
while(I<N)
{
 if (ITEM==A[I])
 {
 LOC=I;
 break;

}
 else if(ITEM<A[I])
 break;
 I = I + 1;
}
cout<<endl<<"Display the Result:"<<endl<<endl;
if (LOC==-1)
 cout<<"ITEM is not found and SEARCH is UNSUCCESSFULL";
else
 cout<<"SEARCH is SUCCESSFULL and ITEM is found at location: "<<I;

// End of LINEAR SEARCHING ALGORITHM

getch ();
}

2. Binary Search:
Binary search is the most efficient searching technique for finding an element in a sorted
list/array. In binary search, first, find the middle index of the list/array, then compare
the element (which you want to search) with the middle element of the list/array. If they are
equal, the search is successful otherwise if the element is greater than the middle element
of the list/array, then right side of the list/array will be searched and if the element is less
than the middle element, then left side of the list/array will be searched in similar way.

Example:

 A [13] =

Find the ITEM = 50?

1. BEG=0 & END=12, MID=INT ((0+12)/2) = 6 so A[MID]=70 and 50 < 70.
2. Since 50 < 70 therefore BEG = 0 & END = MID - 1 = 6 – 1 = 5

MID = INT ((0 + 5) / 2) = 2.5 = 2 so A [MID] = 30 and 50 > 30.
3. Since 50 > 30 therefore BEG = MID + 1 = 2 + 1 = 3 & END = 5

MID = INT ((3 + 5) / 2) = 4 so A [MID] = 50 and 50 = 50.

Thus, search is successful, the ITEM is found at location 4.

Algorithm for Binary Search: This algorithm is used for binary searching. ITEM is to
be searched in a linear sorted array A having N numbers of filled memory locations. BEG, END
and MID variables are used to store array index numbers.

0 1 2 3 4 5 6 7 8 9 10 11 12
10 20 30 40 50 60 70 80 90 100 110 120 130

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
24

ALGORITHM: BINARY SEARCH (A, ITEM, LB, UB, BEG, END, MID)

Step 1: [Initialization]
 BEG = LB & END = UB
Step 2: [Starting loop to search]
 Repeat step 3, 4 & 5 ….. While (BEG < = END)
Step 3: [Calculate MID]
 MID = INT ((BEG + END) / 2)
Step 4: [Check element]
 If (ITEM = = A [MID]) Then
 Break
 [End of IF Structure]
Step 5: [Set BEG & END]
 If (ITEM < A [MID]) then
 END = MID - 1
 Else:
 BEG = MID + 1
 [End of IF Structure]
 [End of Loop]
Step 6: [Display the Result]
 If (ITEM = = A [MID]) then
 Write (“Element found at location”, MID)
 Else:
 Write (“Element not found”)
 [End of IF Structure]
Step 7: [Finish]
 Exit

BINARY SEARCH ALGORITHM USING C++:

#include<iostream.h>
#include<conio.h>
void main ()
{

 clrscr();
 int A[50], ITEM, MID, BEG, END, N, I;
 cout<<"Enter total number of elements in array: ";
 cin>>N;
 cout<<endl<<"Enter elements into Array:"<<endl;
 for(I=0;I<N;I++)
 cin>>A[I];
 cout<<endl<<"Elements in array:";
 for(I=0;I<N;I++)
 cout<<" "<<A[I];
 cout<<endl<<endl<<"Enter an element to find: ";
 cin>>ITEM;

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
25

 // STARTING BINARY SEARCH ALGORITHM

 BEG=0;
 END=N-1;
 while(BEG<=END)
 {
 MID=int(BEG+END)/2;
 if(ITEM==A[MID])
 break;
 else if(ITEM<A[MID])
 END=MID-1;
 else
 BEG=MID+1;
 }
 cout<<endl<<"Display the Result:"<<endl;
 if(ITEM==A[MID])
 cout<<endl<<"SEARCH is SUCCESSFUL and ITEM is found at location:"<<MID;
 else
 cout<<endl<<"ITEM is not found and SEARCH is UNSUCCESSFUL";

 // END OF BINARY SEARCH ALGORITHM

 getch ();
}

Limitations of Binary Search: In binary search two conditions have required first is:

the list must be sorted and the second is: one must have the
direct access to the middle elements in any sub list.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
26

Week No. 06: RECURSION

Recursion: A function calls itself from its own body, is called Recursion.

 So that’s why infinite recursion/loop can occur

 Recursion can also handle/stop using some conditions

General syntax of recursion:
 void recursion ()
 {
 ………….....
 recursion ();
 ………….....
 }

How recursion works in C++:

void recursion ()
 { recursive
 …………..... call
 recursion ();

………….....
 }

 void main ()
 {
 ………….....
 recursion ();
 ………….....
 }
The recursion continues until some condition is met. To prevent infinite recursion, if...else
statement (or similar approach) can be used.

Examples:

Program1: Write a C++ program to use infinite recursion function.
 #include <iostream.h> // header file: Input / Output stream
 #include <conio.h> // header file: Console Input / Output and h means Header

 void recursion ()

{
 cout<<"This is recursion function"; // Console Output
 cout<<1;
 cout<<"Hello"; Output:
 recursion (); Infinite recursion
 }

 void main ()
 {
 clrscr (); // Clear screen
 recursion ();
 getch ();

}

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
27

Now how can handle or stop recursion:

Program2: Write a C++ program to handle/stop infinite recursion function.

#include<iostream.h> // header file
 #include<conio.h> // header file

 void recursion (int X)
 {
 cout<<X<<endl; Output:
 if (X>1) 10
 { 9
 recursion (X-1); 8
 } 7
 } 6
 5

void main () 4
 { 3
 Clrscr (); 2
 recursion (10); 1
 getch ();

}

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
28

Program for Factorial using recursion function in C++:

In mathematics, the factorial of a positive integer n, denoted by n! is the product of all positive
integers less than or equal to n. The factorial of a positive integer n is equal to
n………………..………*3*2*1. The symbol of factorial is !. For example: 4! = 4*3*2*1=24.
Note: The value of 0! is 1 and also the value of 1! is 1.

In C++, Factorial is the result of multiplication of n number of consecutive integers from 1 to n.
The factorial of a positive integer n is equal to 1*2*3*………………………...n.

For example: 4! = 1*2*3*4 = 24

Formula: Z * fac (Z - 1)

fac (4) = 4 * fac (3) = 4 * 6 = 24
fac (3) = 3 * fac (2) = 3 * 2 = 6
fac (2) = 2 * fac (1) = 2 * 1 = 2
fac (1) = 1

Program1: Write a C++ Program for Factorial using recursion function.

#include <iostream.h> // header file
#include <conio.h> // header file

int fac (int z)
{ Output:

if (z = =1) 1*2*3*4=24
return 1;

else
return z * fac (z-1);

}

void main ()
{

clrscr ();
cout<<"Factorial of 4 is "<<fac (4);
getch ();

}

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
29

How the above example works:

void main ()
{

clrscr ();
cout<<"Factorial of 4 is "<<fac (4);
getch ();

}
 6*4=24 is returned to main
int fac (int z) and displayed output
{

if (z = =1)
return 1;

else
return z * fac (z-1);

}

int fac (int z)
{

if (z = =1)
return 1; 3*2=6 is returned

else
return z * fac (z-1);

}

int fac (int z)
{

if (z = =1)
return 1;

else 2*1=2 is returned
return z * fac (z-1);

}

int fac (int z)
{

if (z = =1) 1 is returned

return 1;
else

return z * fac (z-1);
}

4

4-1=3

3-1=2

2-1=1

4

3

2

2

1

3

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
30

User wants to enter a value during execution time:

Program2:

#include <iostream.h> // header file
#include <conio.h> // header file

int fac (int z) Output:
{ Depend on

if (z = =1) Input value
return 1;

else
return z * fac (z-1);

}

void main ()
{

clrscr ();
int value;
cout<<"Enter value for factorial "<<endl;
cin>>value;
cout<<"Factorial of "<<value<< " is "<<fac (value);
getch ();

}

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
31

Program for Fibonacci sequence using recursion function in C++:

Series: 0 1 1 2 3 5 8 13 21 is a Fibonacci series. In Fibonacci series, each term is the
sum of the two preceding (previous) terms.

For example: Fib (5) = 0 1 1 2 3 = 5

 fib (5) = fib (4) + fib (3) = 3 + 2 = 5
 fib (4) = fib (3) + fib (2) = 2 + 1 = 3
 fib (3) = fib (2) + fib (1) = 1 + 1 = 2
 fib (2) = fib (1) + fib (0) = 1 + 0 = 1
 fib (1) = 1
 fib (0) = 0

Fibonacci series using Tree: 5

 fib(5)
 3 2
 fib(4) + fib(3)
 2 1 1 1
 fib(3) + fib(2) fib(2) + fib(1)
 1 0
 1 + fib(1) + fib(0) +

 fib(2) 1 1 0
 fib(1) fib(1) fib(0)
 1 + 0

 fib(1) fib(0)

Program1: Write a C++ Program for Fibonacci Sequence using recursion function.

#include <iostream.h> // header file
#include <conio.h> // header file

int fib (int); // Prototype: is used to write main() function first and then user defined function

void main ()
{ Fibonacci Series:

clrscr (); Fib (5): 0 1 1 2 3 = 5
int f;
f = fib (5);
cout<<"The result of 5 Fibonacci is "<<f; Output:
getch (); The result of 5 Fibonacci is 5

}

int fib(int n)
{

if((n==0) || (n==1))
return n;

else
return (fib (n-1) + fib (n-2));

}

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
32

How the above program works:

Void main ()
{
 ……………………
 cout<<"The result of 5 Fibonacci is "<<fib (5);
 ……………………
}

int fib(int n)
{ 3+2=5 is returned to main () and displayed output

if((n==0) || (n==1))
return n;

else
return (fib (n-1) + fib (n-2));

}

 int fib(int n) int fib(int n)
{ {
 if((n==0) || (n==1))

if((n==0) || (n==1)) return n;
return n; else

else 2+1=3 is returned return (fib (n-1) + fib (n-2));
return (fib (n-1) + fib (n-2)); } 1+1=2 is returned

}
int fib(int n) int fib(int n)
{ {
 if((n==0) || (n==1))
if((n==0) || (n==1)) return n;

return n; 1+1=2 is returned else
else return (fib (n-1) + fib (n-2));

return (fib (n-1) + fib (n-2)); } 1+0=1 is returned
}
int fib(int n) int fib(int n)
{ {
 if((n==0) || (n==1))

if((n==0) || (n==1)) return n;
return n; else 1 is returned

else 1+0=1 is returned return (fib (n-1) + fib (n-2));
return (fib (n-1) + fib (n-2)); }

}
int fib(int n) int fib(int n)
{ {

if((n==0) || (n==1)) if((n==0) || (n==1))
return n; 1 is returned return n;

else else 0 is returned
return (fib (n-1) + fib (n-2)); return (fib (n-1) + fib (n-2));

} }

5

5-1=4 5-2=3

4

3

3-1=2 3-2=1

2

2-1=1 2-2=0

1
0

1

2

2-1=1 2-2=0

4-1=3 4-2=2

3

3-1=2 3-2=1

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
33

User enters a value during execution time:

Program2:

#include <iostream.h> // header file
#include <conio.h> // header file

int fib (int); // Prototype: is used to write main () function first and then user defined function

void main ()
{

clrscr ();
int f, value;
cout<<"Enter value for Fibonacci"<<endl;
cin>>value;
f = fib (value);
cout<<"Fibonacci of "<<value<<" is "<<f;
getch ();

}

int fib (int n)
{

If ((n==0) || (n==1))
return n;

else
return (fib (n-1) + fib (n-2));

}

Types of Recursion:

1. Head Recursion:
A call is head-recursive when the first statement of the function is the recursive call.

Example:
 void print (int n)
 {
 print (n-1); // The first executed statement is recursive call
 if (n < 0) return;
 cout << " " << n;
 }

2. Middle Recursion:
A call is mid-recursive when the recursive call occurs in the middle of the function means there
are other statements before and after the recursive call.

Example:
 void print (int n)
 {
 if (n < 0) return;

print (n-1); // The middle-executed statement is recursive call
cout << " " << n;

 }

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
34

3. Multi Recursion:
When two or more recursive calls occur in a function, then the function is multi-recursive.

Example:
 void print (int n)
 {
 print (n-1);

 if (n < 0) return;
print (n-1);
cout << " " << n;

 }

4. Tail Recursion:
In tail recursion, calculations perform first, and then execute the recursive call, passing the
results of current step to the next recursive step and the recursive call should be the last
statement.

A recursive function is tail recursive when recursive call is the last thing executed by the
function and the recursive call should be the last statement.

OR

Tail recursion is recursion where the function calls itself at the end ("tail") of the function. At
some point, the function decides not to call itself again and the result is returned. Thus, this
behavior is analogous (similar) to a loop.

OR

A function call is said to be tail recursive if there is nothing to do after the function returns
except return its value and the recursive call should be the last statement.

For example, the following C++ function print () is tail recursive:

 void print (int n)
 {
 if (n < 0) return;
 cout << " " << n;
 print (n-1); // The last executed statement is recursive call
 }
Another example:

 void tail (int i)
 {
 if (i>0)
 {
 system.out.print (i+"")
 tail (i-1) // The last executed statement is recursive call
 }
 }

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
35

Is the factorial method a tail recursive method?

 int fact (int x)
 {
 if (x==0)
 return 1;
 else
 return x*fact(x-1);
 }

• No, because when returning back from a recursive call, there is still one pending operation,

multiplication.
• Therefore, factorial is a non-tail recursive method.

Is the following program tail recursive?

 void prog (int i)
 {
 if (i>0)
 {
 prog (i-1);
 System.out.print (i+"");
 prog (i-1);
 }
 }

• No, because there is an earlier recursive call, other than the last one.
• In tail recursion, the recursive call should be the last statement, and there should be no earlier

recursive calls whether direct or indirect.

5. Non-Tail Recursion:
Recursive methods that are not tail recursive are called non-tail recursive.

For example, the following C++ function fact () is non-tail recursive:

int fact (int x)
{
 if (x = = 0)
 return 1;
 else
 return x*fact(x-1);
}

The above factorial is a non-tail recursive method, because when returning back from a
recursive call, there is still one pending operation, multiplication.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
36

6. Direct Recursion:
A function when it calls itself directly is known as Direct Recursion.

For example:

int factorial (int n)
{
 if (n==1 || n==0)
 return 1;
 else
 return n*factorial (n-1);
}

Here, inside factorial (int n), it directly calls itself as n*factorial (n-1). This is direct recursion.

7. Indirect Recursion:
 A function is said to be indirect recursive if it calls another function and the new function calls
the first calling function again.

For example:

int func1(int n)
{
 if (n<=1)
 return 1;
 else
 return func2(n);
}

int func2(int n)
{
 return func1(n-1);
}

Here, recursion takes place in 2 steps, unlike direct recursion.

 First, func1 calls func2
 Then, func2 calls back the first calling function func1.

