
Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
1

Discipline: BS (IT) 3rd Semester
Subject: Data Structure & Algorithms [NEW Course]
Notes: From Week No. 07 – 16
Prepared by: ARSHAD IQBAL, Lecturer (CS/IT), ICS/IT - FMCS,

The University of Agriculture, Peshawar

Data Structure And Algorithm Mid Term Notes
From week No.7 to Week No.16

All Notes Are Available on Our Website
www.cslearnerr.com

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
2

Week No. 07: SORTING

Introduction to sorting: Sorting is the fundamental operation in computer science. It refers to
the operation of arranging data in some given order such as increasing or decreasing with
numerical data or alphabetically with character data. In real life we come across several
examples of sorted information e.g., in the telephone directory, the names of the telephone
owners are written in alphabetical order etc.

Example: Consider we have six numbers as 1 3 5 2 6 4 we can arrange it in ascending order
as 1 2 3 4 5 6 or in descending order as 6 5 4 3 2 1. Similarly, if we have alphabets B A D E C F
we can arrange it in ascending order (A to Z) as A B C D E F or in descending order (Z to A)
F E D C B A.
A sort can be classified as Internal Sort if the elements are sorted in main memory
or External Sort if some of an element that is sorting in auxiliary memory. Here will be
discussed Internal Sort only.

Sorting Methods: There are many sorting methods which are used but some of them are the
following:

1. Selection Sort
2. Bubble Sort
3. Insertion Sort
4. Quick Sort

1. Selection Sort:
In selection sort, select the first element and compare it with the rest of the elements.
For ascending order, if the next compared element is less than the selected element, then swap
the selected element with the compared element. Otherwise compare the selected element with
the next element of array. This process will find the 1st smallest element and put it on the first
position in the first pass. In second pass, it will find the second smallest element of array and
put it on the second position and so on.

Similarly, for descending order, if the next compared element is greater than the selected
element, then swap the selected element with the compared element. Otherwise compare the
selected element with the next element of array. This process will find the 1st greatest element
and put it on the first position in the first pass. In second pass, it will find the second greatest
element of array and put it on the second position and so on.

The selection sort is simple to implement. It is however, insufficient for large lists. It is usually
used to sort lists no more than 1000 items. For sorting N elements, N-1 passes are required.

Example [Ascending Order]:

40 59 36 23 65 46

 Pass 1: 40 59 36 23 65 46

 40 59 36 23 65 46

 36 59 40 23 65 46

 23 59 40 36 65 46

 23 59 40 36 65 46

 23 59 40 36 65 46

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
3

 Pass 2: 23 59 40 36 65 46

 23 40 59 36 65 46

 23 36 59 40 65 46

 23 36 59 40 65 46

 23 36 59 40 65 46

Pass 3: 23 36 59 40 65 46

 23 36 40 59 65 46

 23 36 40 59 65 46

 23 36 40 59 65 46

 Pass 4: 23 36 40 59 65 46

 23 36 40 59 65 46

 23 36 40 46 65 59

 Pass 5: 23 36 40 46 65 59

 23 36 40 46 59 65

After sorting, the elements of the array are: 23 36 40 46 59 65

Algorithm for Selection Sort: This algorithm is used for selection sort of a linear array A
having N filled elements. S and C are the control variables for loops and TEMP is used for
swapping process.

ALGORITM [For Ascending Order]: SELECTION SORT (A, N, S, C, TEMP)

Step 1: [Starting Selection Loop]
 Repeat step 2 for S = 0 to N - 2 by 1

Step 2: [Starting Comparison Loop]
 Repeat step 3 for C = S + 1 to N – 1 by 1

Step 3: [Compare elements]
 If (A[S] > A[C]) then:
 TEMP = A[S]
 A[S] = A[C]
 A[C] = TEMP
 [End of IF structure]

Step 4: [Finish]
 Exit

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
4

ALGORITM [For Descending Order]: SELECTION SORT (A, N, S, C, TEMP)

Step 1: [Starting Selection Loop]
 Repeat step 2 for S = 0 to N - 2 by 1

Step 2: [Starting Comparison Loop]
 Repeat step 3 for C = S + 1 to N – 1 by 1

Step 3: [Compare elements]
 If (A[S] < A[C]) then:
 TEMP = A[S]
 A[S] = A[C]
 A[C] = TEMP
 [End of IF structure]

Step 4: [Finish]
 Exit

2. Bubble Sort: Bubble sort bubble up the largest value or smallest value to the end.
In bubble sort, two adjacent memory cells are compared. If 1st is greater than the 2nd then
exchanges them. To arrange an array in ascending order, through exchange of elements, the
largest value slowly floats or bubbles up to the top or end. Similarly, to arrange an array
in descending order, the smaller value slowly bubbles up to the top or end.

Bubble sort is a slow method therefore it is used for sorting limited amount of data.
Bubble sort is easily programmable. For sorting N number of elements, N-1 passes are required.

Example [Ascending Order]:
 35 17 49 37 15

Pass 1: 35 17 49 37 15

 17 35 49 37 15

 17 35 49 37 15

 17 35 37 49 15

 17 35 37 15 49

Pass 2: 17 35 37 15

 17 35 37 15

 17 35 37 15

 17 35 15 37

Pass 3: 17 35 15

 17 35 15

 17 15 35

Pass 4: 17 15

 15 17

Thus after 4 passes, the elements of the sorted array are: 15 17 35 37 49

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
5

Algorithm for Bubble Sort: Algorithm for bubble sort of a linear array A having N filled
elements. P and C are the control variables for loops and TEMP is used for swapping process.

ALGORITHM [For Ascending Order]: BUBBLE SORT (A, N, P, C, TEMP)

Step 1: [Starting Passes Loop]
 Repeat step 2 for P = 1 to N – 1 by 1
Step 2: [Starting Comparison Loop]
 Repeat step 3 for C = 0 to (N – P) - 1 by 1
Step 3: [Compare elements]
 If (A[C] > A [C + 1]) then:
 TEMP = A [C]
 A [C] = A [C+1]
 A [C + 1] = TEMP
 [End of IF structure]
Step 4: [Finish]
 Exit

ALGORITHM [For Descending Order]: BUBBLE SORT (A, N, P, C, TEMP)

Step 1: [Starting Passes Loop]
 Repeat step 2 for P = 1 to N – 1 by 1
Step 2: [Starting Comparison Loop]
 Repeat step 3 for C = 0 to (N – P) – 1 by 1
Step 3: [Compare elements]
 If (A[C] < A [C + 1]) then:
 TEMP = A [C]
 A [C] = A [C+1]
 A [C + 1] = TEMP
 [End of IF structure]
Step 4: [Finish]
 Exit

3. Insertion Sort: Insertion sort is performed by inserting each element at the
appropriate position. In insertion sort, the first pass starts with the comparison of 1st element
with itself. In second pass, the 2nd element is compared with 1st element. In 3rd pass, the 3rd
element is compared with 1st and 2nd element. In general, in every pass elements are compared
with all elements to its left. If at any point it is found that element can be inserted at a position
then space is created for it by shifting the right elements to the right side and inserting the
element at a suitable position. For sorting N number of elements, N passes are required.

Example for ascending order:

 25 57 48 37 12 92
Pass 1: 25

25
57
57

48
48

37
37

12
12

92
92

Pass 2: 25
25

57
57

48
48

37
37

12
12

92
92

Pass 3: 25 57 48 37 12 92
 25 48 57 37 12 92

 25 48 57 37 12 92

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
6

Pass 4: 25 48 57 37 12 92
 25 48 37 57 12 92
 25 37 48 57 12 92

 25 37 48 57 12 92

Pass 5: 25 37 48 57 12 92
 25 37 48 12 57 92
 25 37 12 48 57 92
 25 12 37 48 57 92
 12 25 37 48 57 92

Pass 6: 12 25 37 48 57 92
 12 25 37 48 57 92

Thus the sorted array elements are: 12 25 37 48 57 92

Algorithm for Insertion Sort: This algorithm is used for insertion sort of a linear array A
having N filled elements. P and I are control variables for loops and TEMP is used to store the
inserting element.

ALGORITHM (Ascending Order): INSERTION SORT (A, N, P, I, TEMP)

 Step 1: [Starting passes loop]
 Repeat step 2 & 3 for P = 0 to N – 1 by 1

Step 2: [Set TEMP and Counter variable I]
 TEMP = A [P]
 I = P – 1

Step 3: [Starting comparison loop]
 Repeat step 4 & 5 while (I > = 0 && TEMP < A [I])

Step 4: [Interchange values]
 A [I + 1] = A [I]

 A [I] = TEMP
Step 5: [Decrement Counter]

 I = I – 1
Step 6: [Finish]

 Exit

ALGORITHM (Descending Order): INSERTION SORT (A, N, P, I, TEMP)

Step 1: [Starting passes loop]
Repeat step 2 & 3 for P = 0 to N – 1 by 1

Step 2: [Set TEMP and Counter variable I]
TEMP = A [P]
I = P – 1

Step 3: [Starting comparison loop]
Repeat step 4 & 5 while (I > = 0 && TEMP > A [I])

Step 4: [Interchange values]
A [I + 1] = A [I]
A [I] = TEMP

Step 5: [Decrement counter]
I = I – 1

Step 6: [Finish]
Exit

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
7

Quick Sort:
Quick sort uses the idea of divide and conquer technique. A quick sort first selects a value,
which is called the pivot value [first item in the list]. The role of the pivot value is to assist with
splitting the list. The actual position where the pivot value commonly called the split point will
be used to divide the list/array into two halves (splits) in such a way that elements in the left half
are smaller than pivot and elements in the right half are greater than pivot.

Three steps are used recursively in quick sort:

1. Find pivot that divides the array into two sub arrays.
2. Quick sort the left sub array
3. Quick sort the right sub array

Example for Ascending Order:

Consider an array arr [6] having 6 elements:
Arr [6] = {5 2 6 1 3 4} arrange the elements in ascending order
by using quick sort:
 Pivot

0 1 2 3 4 5
5 2 6 1 3 4

 Left Right

Remember the rules:

For Ascending Order
1. All elements to the right of pivot must be greater than pivot.
2. All elements to the left of pivot must be smaller than pivot.

For Descending Order:
1. All elements to the right of pivot must be smaller than pivot.
2. All elements to the left of pivot must be greater than pivot.

 Is pivot < right? Pivot=5
NO Right=4

 Pivot swap pivot and right

0 1 2 3 4 5
5 2 6 1 3 4

 Left Right

After swapping:
 Pivot

0 1 2 3 4 5
4 2 6 1 3 5

 Left Right

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
8

Is pivot > left? Pivot = 5
NO Left = 4, 2, 6

 Swap pivot and left pivot

0 1 2 3 4 5
4 2 6 1 3 5

 Left Right

After swapping:

 pivot

0 1 2 3 4 5
4 2 5 1 3 6

 Left Right

Is pivot < right? Pivot = 5

NO Right = 6, 3

 Swap pivot and right
 pivot

0 1 2 3 4 5
4 2 5 1 3 6

 Left Right

 After swapping:

 pivot

0 1 2 3 4 5
4 2 3 1 5 6

 Left Right

Is pivot > left? Pivot = 5
NO Left = 3, 1, 5

 Swap pivot and right
 pivot

0 1 2 3 4 5
4 2 3 1 5 6

 Left/Right

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
9

 Both left and right are point at the same element of the array
This means 5 is the pivot and it is at the sorted position.

 Elements left of pivot are smaller pivot Elements right of pivot are greater

0 1 2 3 4 5
4 2 3 1 5 6

 Left sub array Right sub array
 Left/Right

So, pivot has divided the array into two sub arrays.

Now quick sort the left sub array:

 Pivot

0 1 2 3 4 5
4 2 3 1 5 6

 Left Right

 Is pivot < right? Pivot = 4
NO Right = 1

 Pivot swap pivot and right

0 1 2 3 4 5
4 2 3 1 5 6

 Left Right

 After swapping:
 Pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left Right

 Is pivot > left? Pivot = 4
NO Left = 1, 2, 3, 4

 swap pivot and right
 Pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right

 Both left and right are point at the same element of the array
This means 4 is the pivot and it is at the sorted position.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
10

 Elements left of pivot are smaller pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left sub array
 Left/Right

So, pivot has divided the array into left sub array and there is a wall at the right
side of 4.

Now quick sort the left sub array:

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left Right

Is pivot < right? Pivot = 1
NO Right = 3, 2, 1

 swap pivot and right

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right

 Both left and right are point at the same element of the array

This means 1 is the pivot and it is at the sorted position.

 pivot Elements right of pivot are greater

0 1 2 3 4 5
1 2 3 4 5 6

 Right sub array
 Left/Right

So, pivot has divided the array into right sub array and there is no element to the
left of 1.

Now quick sort the right sub array:

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left Right

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
11

Is pivot < right? Pivot = 2
NO Right = 3, 2

 swap pivot and right

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right

 Both left and right are point at the same element of the array
This means 2 is the pivot and it is at the sorted position.

 Elements right of pivot are greater

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Right sub array
 Left/Right

So, pivot has divided the array into right sub array and there is a wall at the left side of 2.

Now quick sort the right sub array:

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right

Is pivot < right? Pivot = 3
NO Right = 3

 swap pivot and right

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right

 Both left and right are point at the same element of the array
This means 3 is the pivot and it is at the sorted position.

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right right sub array

Pivot has walls on both the sides so it is done with left sub array.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
12

Remember: 5 was the first pivot and it divided the array into two sub arrays.

Now quick sort the right sub array:

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right

Is pivot < right? Pivot = 6

NO Right = 6
 swap pivot and right

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right

 Both left and right are point at the same element of the array

This means 6 is the pivot and it is at the sorted position.

 pivot

0 1 2 3 4 5
1 2 3 4 5 6

 Left/Right

So, there is no element to the right side of 6 and also there is a wall at left side of 6.

 Thus, the array is sorted!

0 1 2 3 4 5
1 2 3 4 5 6

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
13

Week No. 08: STACK

Introduction to Stack:
Stack is a Linear Data Structure. By Linear means that elements are

stored in continuous memory location in computer.

A Stack is a list of elements in which an element may be inserted or deleted only at
the one end, which is called TOP of the Stack. It means that elements of Stack can be removed
in reverse order, in which they are inserted into stack.

Insertion of data/element into the Stack TOP is called PUSH or “Stacking”. And Deletion
of data/element from the Stack TOP is called POP or “Un Stacking”.

The items in the Stack are stored and retrieved in LIFO and FILO manner. LIFO means
Last In First Out and FILO means First In Last Out. Other names used for Stack are “PILES”
and “Push Down List”.

For example: Suppose 11 12 13 14 15 are elements and PUSH these elements to the
empty Stack. They are shown as follow:

15 4 Top of Stack
14 3
13 2
12 1
11 0

Stack Implementation:
Stack can be implemented in the following two ways:

1. Static Implementation
2. Dynamic Implementation

1. Static Implementation:
Static implementation of Stack is done through the linear array e.g. “Stack”.
A pointer variable TOP (which contains the location of the TOP element of the Stack) and
a variable MAXSTK (which gives us maximum number of elements that can be inserted or
Pushed on the Stack) are used e.g.
 Stack

10 20 30 40
 0 1 2 3 4 5 6 7
TOP 3 MAXSTK 7

There are some limitations in the static implementation of stack using array such as:

1. When a size of the stack is declared, its size cannot be modified during program execution.

2. It is also inefficient for utilization of memory i.e. when a stack is declared then memory is

allocated which is equal to the stack size. But when need more space in memory at the
execution time, the stack does not provide the facility to reserve the memory at the
execution time. And also, when the stack is declared with maximum size but the elements
stored in stack is less than the maximum size then the remaining memory will be wasted.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
14

2. Dynamic Implementation:
Pointers can also be used for dynamic implementation of stack. The link list is an example of
dynamic implementation. Using dynamic implementation, at run time there is no restriction
on the number of elements. The stack may be expendable. The memory is efficiently utilized
with pointers. Memory is allocated only when element is pushed to the stack.

Basic Operations on Stack:

The following operations can be performed on the Stack.

1. Create Stack: This operation creates an Empty Stack.
2. PUSH: When a new item is inserted into the Top of the Stack is called PUSH.
3. POP: When an item or element is removed from the Top of the Stack is called POP.
4. Empty: Return true if Stack contains no elements otherwise false.

PUSH Operation:
PUSH operation is used to insert an element to the Stack. To insert an element first of all the
Stack Top is monitored if it is equal to the maximum size of Stack then it shows the message of
Overflow of Stack. Otherwise, the Top pointer is incremented: TOP = TOP + 1 and the item is
pushed in the Top of the Stack e.g.

 10 TOP
 8 Top 8
 TOP 2 TOP 2 2

 Empty Stack Push 2 Push 8 Push 10

Algorithm for PUSH Operation:
PUSH algorithm is used to push an ITEM into the Stack. TOP is the pointer pointing to the
Top of the Stack. MAXSTK is the maximum numbers of elements.

ALGORITHM: PUSH (STACK, TOP, MAXSTK, ITEM, N)

Step 1: [Initially TOP and MAXSTK pointers positions]
 TOP = -1 or 0 or 1 or 2……... & MAXSTK = N-1
Step 2: [Check overflow condition]

 If (TOP = = MAXSTK) then:
 Write (“OVERFLOW”) and return
 [End of IF structure]

Step 3: [Set TOP Pointer]
If (TOP = = -1) then:

TOP = 0
Else:

TOP = TOP + 1
 [End of IF structure]

Step 4: [Insert value]
Set STACK [TOP] = ITEM

Step 5: [Finish]
Exit

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
15

Algorithm to PUSH multiple elements at a time:
This algorithm is used to PUSH multiple elements at a time in a stack.

ALGORITHM: PUSH (STACK, TOP, MAXSTK, N, ITEM)

Step 1: [Initially TOP and MAXSTK pointers positions]
 TOP = -1 or 0 or 1 or 2……... & MAXSTK = N-1
Step 2: [Check overflow condition]

 If (TOP = = MAXSTK) then:
 Write (“OVERFLOW”) and return
 [End of IF structure]

Step 3: [Start loop to enter multiple elements]
 Repeat step 4 & 5 while (TOP < MAXSTK)
Step 4: [Set TOP Pointer]

If (TOP = = -1) then:
TOP = 0

Else:
TOP = TOP + 1

 [End of IF structure]
Step 5: [Insert value]

Set STACK [TOP] = ITEM
[End of Loop]

Step 6: [Finish]
Exit

POP Operation:

POP operation is used to delete an element from the Stack. To delete an element first of all the
Stack TOP is monitored if it is equal to the empty stack (-1 in C) then it shows the message of
“Underflow” or “Empty Stack”. Otherwise, the TOP pointer is decremented: TOP = TOP - 1
and the item is returned.

Example:

10 TOP
8 8 TOP
2 2 2 TOP

 Stack Initially POP 10 POP 8 POP 2
 Empty Stack

 TOP = – 1

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
16

Algorithm for POP Operation:
POP algorithm deletes the TOP element of STACK and assigns it to the variable ITEM.

ALGORITHM: POP (STACK, TOP, ITEM)

Step 1: [Initially TOP pointer position]
 TOP = – 1 or 0 or 1 or 2……………...
Step 2: [Check underflow condition]

 If TOP = = – 1 then:
 Write ("UNDERFLOW") and return
 [End of IF Structure]

Step 3: [Assign TOP element to ITEM]
 ITEM = STACK [TOP]
 STACK [TOP] = -1 //Assign Garbage value

Step 4: [Set TOP Pointer]
 If (TOP = = 0) then:
 TOP = -1
 Else:
 TOP = TOP - 1
 [End of IF Structure]

Step 5: [Finish]
 Exit

Algorithm to POP multiple elements at a time:
This algorithm is used to delete multiple elements at a time from a STACK.

ALGORITHM: POP (STACK, TOP, ITEM)

Step 1: [Initially TOP pointer position]
 TOP = – 1 or 0 or 1 or 2………………
Step 2: [Check underflow condition]

 If TOP = = -1 then:
 Write ("UNDERFLOW") and return
 [End of IF Structure]

Step 3: [Start loop to delete multiple elements]
 Repeat step 4 & 5 while (TOP > = 0)
Step 4: [Assign TOP element to ITEM]

 ITEM = STACK [TOP]
 STACK [TOP] = - 1 //Assign Garbage value

Step 5: [Set TOP pointer]
 If (TOP = = 0) then:
 TOP = -1
 Else:
 TOP = TOP - 1
 [End of IF Structure]
 [End of Loop]

Step 6: [Finish]
 Exit

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
17

Week No. 09: QUEUE
Introduction to Queue:

A Queue is a Linear List of elements in which Deletion can take place only at one end,
called FRONT, and Insertion can take place at other end, called REAR. The term FRONT
and REAR are used in describing a Linear List only when it is implemented as a Queue.

The Queue is also called First In First Out (FIFO) Lists, since the first element in the Queue
will be the first element that can get out of the Queue. In other words, the order in which the
elements enter into Queue is the order in which they will leave.

The purpose of Queue is to provide some form of buffering. In a computer system, Queue is
used for:

Process Management: For example, in a timesharing system in computer, programs are added
to a queue and are executed one after the other.

Buffer between the fast computer and a slow printer: Documents sent to the printer for
printing is added to a queue. The document sent first is printed first and document sent last is
printed last.

An important example of queue in computer science occurs in a timesharing system in which
programs with different priorities form a queue which waiting to be executed (priority queue).

Queues abound in everyday life. The automobiles are waiting to pass through an intersection
from a queue in which the first car in line is the first can through; the people are waiting in line
at a bank from a queue, where the first person in line is the first person to be waited on and so
on.

For example:

Deletion 10 20 30 40 50 Insertion

 Front Rear

Operation on Queue:

Four primitive’s operations applied to a Queue.

1. Insertion: The insertion operation [insert (QUEUE, ITEM)] inserts an ITEM at the
REAR of a QUEUE.

2. Deletion: The deletion operation [ITEM = remove (QUEUE)] removes the element
from the FRONT of a QUEUE.

3. Empty: The third operation [empty (QUEUE)] return FALSE when the QUEUE
is not empty otherwise it returns TRUE if the QUEUE is empty.

4. Full: There is another operation performed on a QUEUE when it is
implemented in linear arrays. The full operation [full (QUEUE)] return
TRUE value if the QUEUE is full otherwise it returns FALSE.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
18

Representation of Queue:
The queue is represented in the computer in various ways, usually by means of one-way link list
or linear array. Let takes the example of linear array.

Consider a linear array QUEUE and two pointers’ variables FRONT and REAR. FRONT will
contain the location number of the front element of the queue and REAR will contain the
location number of the rear element. The condition FRONT = REAR = – 1 will indicate that
queue is empty. If the array QUEUE has N elements, then whenever a new element is added,
the value of the REAR will be incremented by 1 e.g.

 REAR = REAR + 1

Similarly, when an item is deleted the value of the FRONT will be incremented by 1 e.g.

FRONT = FRONT + 1
Types of Queue:

There are two types of Queue:
1. Non-Circular Queue
2. Circular Queue

1. Non-Circular Queue:

Simple example for non-Circular QUEUE: To explain the above operations we have
a simple example as follow:

 FRONT = REAR = -1 or NULL
Empty (QUEUE) =? It will return
TRUE because QUEUE is empty.

FRONT = REAR = 0
Insert (QUEUE, A)

FRONT = 0, REAR = 1
Insert (QUEUE, B)

FRONT = 0, REAR = 2
Insert (QUEUE, C)

full (QUEUE) =? It will return FALSE because the QUEUE is not full.

FRONT = 1, REAR = 2
ITEM = remove (QUEUE, A)

FRONT = 1, REAR = 3
Insert (QUEUE, D)

FRONT = 1, REAR = 4
Insert (QUEUE, E)

FRONT = 2, REAR = 4
ITEM = remove (QUEUE, B)

full (QUEUE) =? It will return TRUE because the QUEUE is full (means REAR = N-1).

 0 1 2 3 4

 0 1 2 3 4
A

 0 1 2 3 4
A B

 0 1 2 3 4
A B C

 0 1 2 3 4
 B C

 0 1 2 3 4
 B C D

 0 1 2 3 4
 B C D E

 0 1 2 3 4
 C D E

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
19

2. Circular Queue:

Example: To explain the above operations we have a simple example as follow:

 0 1 2 3 4

FRONT = REAR = -1 or NULL
Empty (QUEUE) =? It will return TRUE because QUEUE is empty.

FRONT = REAR = 0
Insert (QUEUE, A)

FRONT = 0, REAR = 1
Insert (QUEUE, B)

FRONT = 0, REAR = 2
Insert (QUEUE, C)

FRONT = 1, REAR = 2
ITEM = remove (QUEUE, A)

FRONT = 1, REAR = 3
Insert (QUEUE, D)

FRONT = 1, REAR = 4
Insert (QUEUE, E)

FRONT = 2, REAR = 4
ITEM = remove (QUEUE, B)

 full (QUEUE) =? It will return FALSE because the QUEUE is not full.

FRONT = 2, REAR = 0

 Insert (QUEUE, F)

FRONT = 2, REAR = 1

 Insert (QUEUE, G)

full (QUEUE) =? It will return TRUE because the QUEUE is full (means REAR = N-1
&& FRONT = 0 || REAR + 1 = FRONT).

In Circular Queue, the QUEUE [0] comes after the QUEUE [N – 1] in linear array i.e.
the first element stored after the last element of the queue if the space is available. With this
assumption an ITEM is inserted into the QUEUE by assigning ITEM to QUEUE [0]. Instead of
incrementing REAR to N, reset REAR = 0 and then assign the ITEM.

 QUEUE [REAR] = ITEM

Similarly, if FRONT = N – 1 and the element of QUEUE is deleted then reset FRONT = 0
instead of increasing FRONT to N.

Suppose that QUEUE (Circular/non-Circular) contains only one element i.e.
FRONT = REAR and the element is deleted then reset FRONT = REAR = NULL (or -1)
indicating that the queue is empty. If FRONT = REAR = -1 (means queue is empty) and
the element is inserted, then reset FRONT = REAR = 0.

 0 1 2 3 4
A

 0 1 2 3 4
A B

 0 1 2 3 4
A B C

 0 1 2 3 4
 B C

 0 1 2 3 4
 B C D

 0 1 2 3 4
 B C D E

 0 1 2 3 4
 C D E

 0 1 2 3 4
F C D E

 0 1 2 3 4
F G C D E

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
20

Insertion Algorithm for Non-Circular QUEUE: This algorithm is used to insert an ITEM
to Non-Circular QUEUE.

ALGORITHM: INSERTION (FRONT, REAR, ITEM, N, QUEUE)

Step 1: [Initially FRONT & REAR pointers positions]
 FRONT = -1 or 0 or 1 or 2....…& REAR = -1 or 0 or 1 or 2……
Step 2: [Check overflow condition]

 If (REAR = = N - 1) Then:
 Write (“Overflow”)
 Return
 [End of IF Structure]

Step 3: [Set REAR Pointer]
 If (REAR = = -1) Then:
 REAR = 0

Else:
REAR = REAR +1

 [End of IF Structure]
Step 4: [Insert the Item]

QUEUE [REAR] = ITEM
Step 5: [Set the FRONT Pointer]

If (FRONT = = -1) Then:
FRONT = 0

[End of IF Structure]
Step 6: [Finish]

Exit

Insertion Algorithm for Circular QUEUE: This algorithm is used to insert an ITEM

to Circular QUEUE.

ALGORITHM: INSERTION (FRONT, REAR, ITEM, N, QUEUE)

Step 1: [Initially FRONT & REAR pointers positions]
 FRONT = -1 or 0 or 1 or 2....…& REAR = -1 or 0 or 1 or 2………
Step 2: [Check overflow condition]

If (FRONT = 0 && REAR = N - 1 || REAR + 1 = FRONT) Then:
Write (“Overflow”)
Return

[End of IF Structure]
Step 2: [Set REAR Pointer]
 If (REAR = = - 1 || REAR = = N - 1) Then:
 REAR = 0

Else:
REAR = REAR +1

 [End of IF Structure]
Step 3: [Insert the Item]

QUEUE [REAR] = ITEM
Step 4: [Set the FRONT Pointer]

If (FRONT = = -1) Then
FRONT = 0

[End of IF Structure]
Step 5: [Finish]

Exit

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
21

Deletion Algorithm for Non-Circular QUEUE: This algorithm is used to delete an ITEM
from non-Circular QUEUE.

ALGORITHM: DELETION (FRONT, REAR, QUEUE, ITEM)

Step 1: [Initially FRONT & REAR pointers positions]
 FRONT = -1 or 0 or 1 or 2....…& REAR = -1 or 0 or 1 or 2………
Step 2: [Check Underflow Condition]

If (FRONT = = -1) Then:
Write (“Underflow”)
Return

[End of IF Structure]
Step 3: [Delete Item]

ITEM = QUEUE [FRONT]
QUEUE [FRONT] = -1 //Assign Garbage value

Step 4: [Set FRONT and REAR Pointers]
If (FRONT = = REAR) Then: //its mean queue has only one item

FRONT = REAR = NULL // or FRONT = REAR = - 1
Else:

FRONT = FRONT + 1
[End of IF Structure]

Step 5: [Finish]
Exit

Deletion Algorithm for Circular QUEUE: This algorithm is used to delete an ITEM

from Circular QUEUE.

ALGORITHM: DELETION (FRONT, REAR, QUEUE, N, ITEM)

Step 1: [Initially FRONT & REAR pointers positions]
 FRONT = -1 or 0 or 1 or 2....…& REAR = -1 or 0 or 1 or 2………
Step 2: [Check Underflow Condition]

If (FRONT = = -1) Then:
Write (“Underflow”)
Return

[End of IF Structure]
Step 3: [Delete Item]

ITEM = QUEUE [FRONT]
QUEUE [FRONT] = -1 //Assign Garbage value

Step 4: [Set FRONT and REAR Pointers]
If (FRONT = = REAR) Then: //its mean queue has only one item

FRONT = REAR = NULL //or FRONT = REAR = - 1
Else if (FRONT = = N - 1) Then:
 FRONT = 0
Else:

FRONT = FRONT + 1
[End of IF Structure]

Step 5: [Finish]
Exit

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
22

Priority Queue:

A Priority Queue is different from a "Normal Queue", because instead of being a
"FIFO (First-In-First-Out)" technique, data structure values come out in order by Priority.

Priority Queue stores multiple tasks using a partial ordering based on Priority and ensure
Highest Priority task at the Head of Queue.

Priority Queue is a variant (alternative/modified) of Queue in which Insertion is performed
in the order of arrival and Deletion is performed based on the Priority means each element
is deleted on the basis of their Priority [Higher Priority > Lower Priority]. If there is
Same Priority, then will base on FCFS (First Come First Serve) technique.

Here is a conceptual picture of a Priority Queue:

Think of a Priority Queue as a kind of Bag that holds Priorities. One can put In and the
current Highest Priority can take Out. (Priorities can be any Comparable values e.g. use
numbers etc.)

Priority Queue is an extension of Queue with the following Properties:

1. Every item has a Priority associated with it.

2. An element with High Priority is Dequeued before an element with Low Priority.

3. If two elements have the Same Priority, they are served according to their Order in the
Queue.

A typical Priority Queue supports following Operations:

1. Insert (Item, Priority): Inserts an item with given Priority.

2. GetHighestPriority (): Returns the Highest Priority item means find/search
Highest Priority item.

3. DeleteHighestPriority (): Removes the Highest Priority item.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
23

Types of Priority Queue:

1. Ascending Order Priority Queue/Min Priority Queue:

Lower number is given to a High Priority e.g. 1 2 3 4……………………...n

Example: A Priority Queue might be used, for example, to handle the jobs sent to
the Computer Science Department's printer: Jobs sent by the department chairman
should be printed first, then jobs sent by professors, then those sent by graduate students,
and finally those sent by undergraduates. The values put into the priority queue would be
the priority of the sender (e.g. using 1 for the chairman, 2 for professors, 3 for graduate
students, and 4 for undergraduates), and the associated information would be the document
to print. Each time the printer is free; the job with the highest priority would be removed
from the print queue and printed. (Note that it is OK to have multiple jobs with the
same priority; if there is more than one job with the same highest priority and when the
printer is free, then any one of them can be selected).

2. Descending Order Priority Queue/Max Priority Queue:

Higher number is given to Higher Priority e.g. n………….4 3 2 1.

Example: Same example as above. The values put into the priority queue would be
the priority of the sender (e.g. using 4 for the chairman, 3 for professors, 2 for graduate
students, and 1 for undergraduates), and the associated information would be the document
to print. Each time the printer is free; the job with the highest priority would be removed
from the print queue and printed. (Note that it is OK to have multiple jobs with the
same priority; if there is more than one job with the same highest priority and when the
printer is free, then any one of them can be selected).

Representation of Priority Queue (Min Priority Queue) as One-Way Linked List:

Start

 Loc. List Priority Link
0 222
1 444
2 555
3 333
4 111
5 666
6 777
- -
- -
- -

333 1 222 2 111 2 666 3 444 4

555 4 777 4 NULL

2
4
4
1
2
3
4
-
-
-

4
2
6
0
5
1

NULL
-
-
-

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
24

Week No. 10: ONE WAY LINKED LIST

Introduction:
A list is an ordered collection of data. One way to use the list is sequential array. In this type of
lists, it is easy to compute the address of an element for storage and retrieval purposes. On the
other hand, these have certain limitations. There are many situations in which there is a need for
a data structure in which data can be updated, inserted and deleted continuously and the data
should be in sorted format at run time. That is, insertion and deletion of data items frequently
occurs. But it is relatively expensive to insert or delete elements from sequential list e.g. array.

The problems with arrays are:

 When a number of users share main memory, there may not be enough adjacent
memory locations left to hold an array. But there could be enough memory in the shape
of small free blocks.

 The second major problem with array is when we have a large list of data elements and
exact number of elements cannot be known in advance while an array has a fixed size
and we cannot increase the size of array on run time when additional memory is
required; therefore, arrays are called static data structure.

 The data access speed becomes slow when the size of the array becomes large.

To overcome these limitations Linked Lists are used. In a link list the elements are logically
adjacent needs not to be physically adjacent in the memory, but they should be linked or
connected through a pointer.

Link List:
The link list is a dynamic data structure i.e. the size is not fixed and it will expand during
program execution. Also, a link list is a linear data structure having unlimited elements, each
element of a link list is called a “node”.

Types of Link List: There are two types of link list:

 Single Linked List/One Way Linked List
 Double Linked List/Two Way Linked List

Single Linked List/One Way Linked List:
In one-way link list, a node (each element of a link list is called a “node”) have at least two
fields, the first one is the data or information field (more than one data fields can be used in a
node to store information) which contain the actual data of a list and the other field is called
link field or next-pointer field which contain the address of the next node of a link list.

Example:

In the following diagram of a one-way link list have four nodes. Each node has two parts.
The left part represents the information part of the node and the right part represents pointer
field or link field, which contains the memory address of the next node. In the list we have a
start node whose address is stored in a pointer START. We need a START pointer to trace the
list. A special case is the list that when the list has no nodes. Such a list is called a null list or
empty list and denoted by null pointer in the START pointer.

Data/Information Pointer

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
25

The pointer field of the last node will contain the null pointer to show the end of the list.

START
1000

 1000 1001 1002 1003
10 1001 20 1002 30 1003 40 NULL

One Way Link List

Operations on One Way Linked List with algorithms:

1. Insertion Operation:
Let us suppose LIST be a one-way link list with N successive nodes and a node insert is to be
inserted in a link list. The given node can be inserted in a link list in the following three
locations.

I. Front Insertion
II. Middle Insertion

III. End Insertion
I. Front Insertion:
It is the easiest way to insert a node in the link list. Following algorithm is used to insert a
node in the front of the LIST.

ALGORITHM: FRONT INSERTION (Insert, Node, First, Data, Info)
This algorithm is used to insert a node insert at the start of a one-way link list.

Step 1: [Create a node and assign it to insert]
 Insert = (struct node *) malloc (size of (struct node))

Step 2: [Store Information]
 Insert -> data = info
Step 3: [assign first to the insert link]

 Insert -> link = First
Step 4: [Set first as insert]

 First = Insert
Step 5: [Finish]

 Exit

In step 1, 2 & 3 we create a node insert, store information in it and assign to the first node
address. In step 4, we assign insert to first pointer to make newly inserted node the first node
of the LIST. The following figure shows the above mechanism:

FIRST
1004

 1000 1001 1002 1003
10 1001 20 1002 30 1003 40 NULL

 1004

05 1000
INSERT

One Way Link List Front Insertion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
26

II. Middle Insertion: There are two methods, which can be used to insert node at the
middle if a one-way link list.

Method 1: If the nodes of the given list are unsorted then we insert node in a list after a
given node.

Method 2: If the nodes of the given list are sorted in some particular order then the node is
inserted at a particular position so that the sorted order could be maintained.

Here is discussed the second method. The following algorithm inserts a node at a proper place.

ALGORITHM: MIDDLE INSERTION (Prev, First, Cur, X, Insert)
This algorithm is used to insert a node at the proper location in as ordered LIST.

Step 1: [Set Prev to First]
Prev = First

Step 2: [Set Cur to Prev Link]
Cur = Prev -> link

Step 3: [Read value for insertion]
Read (X)

Step 4: [Search for a proper location]
Repeat step 5 & 6 ------ while (Cur -> data < X)

Step 5: [Set Cur as Prev]
Prev = Cur

Step 6: [Set Cur to Cur Link]
Cur = Cur -> link

Step 7: [Create a Node and set it as Insert]
Insert = (struct node *) malloc (sizeof (struct node))

Step 8: [Store information]
Insert -> data = X

Step 9: [Link with Cur]
Insert -> link = Cur

Step 10: [Link Prev with Insert]
 Prev -> link = Insert

Step 11: [Finish]
 Exit

In above algorithm step 4, 5 & 6 are used to find out a proper position for a new node. In step
7 & 8, we create a new node, assign its address to insert pointer and store information.
In step 9, 10 & 11, the new node is linked to the current and previous nodes.

The following figure shows the above mechanism:

FIRST
1000

 1000 1001 1002 1003
10 1001 20 1004 …….. 30 1003 40 NULL

 PREV CUR

1004

25 1002
 INSERT

One Way Link List Middle Insertion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
27

III. End Insertion:
By end insertion, means to insert a node at the end/last of a link list. The algorithm is given as
follow:

ALGORITHM: END INSERTION (Prev, First, Cur, X, Insert)
This algorithm is used to insert a node insert at the end of a one-way link list.

Step 1: [Set Prev pointer to First Node]
Prev = First

Step 2: [Set Cur to prev link]
 Cur = Prev -> link

Step 3: [Read value for insertion]
 Read (X)

Step 4: [Start loop to reach to the end of list]
 Repeat step 5 & 6 ------- while (Cur -> link != Null)

Step 5: [Set Cur as Prev]
 Prev = Cur

Step 6: [Set Cur to Cur -> link]
 Cur = Cur -> link

Step 7: [Create a new node and set it to insert]
 Insert = (struct node *) malloc (size of (struct node))

Step 8: [Store Information]
Insert -> data = X

Step 9: [Set Insert link as Null]
 Insert -> link = null or Insert -> link = Cur -> link

Step 10: [Set Prev link as Insert]
 Cur -> link = Insert

Step 11: [Finish]
 Exit

In the above algorithm step 2 & 3 are used to reach to the end of link list. When end of list is
found then in step 4, 5 & 6, we create a new node; assign its address to insert pointer, store
information and set insert pointer as NULL, because null link pointer shows the end of the
list. In step 7, the new node is linked to previous node.

The following figure shows the above mechanism.

FIRST
1000

 1000

 1001

 1002

1003

10 1001 20 1002 30 1003 40 1004
 CUR

1004

50 NULL
 INSERT

One Way Link List End Insertion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
28

2. Deletion Operation:

Let LIST be a given link list with N successive nodes and we want to delete a node X from a
link list. Then we can delete that node from three different location of a link list, which is given
as:

I. Front Deletion
II. Middle Deletion

III. End Deletion

I. Front Deletion: Front deletion is the easiest way to delete a node from a link list.
Following is the algorithm is used to delete a node from one-way link list from the front or
start.

ALGORITHM: FRONT DELETION (Cur, First)

This algorithm is used to delete a node from the front of a one-way link list.

Step 1: [Set Cur to First] Step 1: [Set Prev to First]
 Cur = First Prev = First

Step 2: [Update First] OR Step 2: [Set Cur to Prev link]
 First = Cur -> link Cur = Prev -> link

Step 3: [Delete Node] Step 3: [Update Prev]
Free (Cur) Prev -> link = Cur -> link

Step 4: [Finish] Step 4: [Delete Node]
Exit Free (Cur)

 Step 5: [Finish]
 Exit

In the above algorithm in step 1, we store the address of first node in current pointer.
In step 2 we update the first to the next node to make the second node as first. In step 3, we
delete the node by free () function provided in C language.

The following figure shows the above mechanism.

FIRST
1001

1000

 1001

 1002

 1003

10 1001 ……….. 20 1002 30 1003 40 NULL

One Way Link List Front Deletion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
29

II. Middle Deletion: In middle deletion if we want to delete node X from a linked list
which is not at the first or last location. For this we start searching for that node in a list. If found
then we should update successor and predecessor and then delete the node. The following
algorithm is used to delete a node from middle form one-way link list.

ALGORITHM: MIDDLE DELETION (Prev, Cur, First, X)
This algorithm is used to delete a node from middle form one-way link list.

Step 1: [Set Prev to First]
 Prev = First

Step 2: [Set Cur to Prev link]
Cur = Prev -> link

Step 3: [Read the value of Node to delete]
 Read (X)

Step 4: [Starting loop to search a node for deletion]
 Repeat step 5, 6 & 7 While (Cur -> link != NULL)

Step 5: [Check nodes, if found delete and return]
 If (X == Cur -> data) then

Prev -> link = Cur -> link
Free (Cur)
Return

 [End of If structure]
Step 6: [Set Cur as Prev]

 Prev = Cur
Step 7: [Update Cur pointer]

 Cur = Cur -> link
Step 8: [Not deleted]

Write (“Element not found to delete”)
Step 9: [Finish]

Exit

In the above algorithm in step 1, 2 we assign previous pointer to first node and cur to the next
of first node. In step 4, 5, 6 & 7 we start loop for searching for the node, if it is found it is
deleted and exited otherwise the prev is updated to cur and cur is updated to the next node.

The following figure shows the above mechanism.

FIRST
1000

 1000

 1001

 1002

 1003

10 1002 ………… 20 1002 …… 30 1003 40 NULL
 PREV CUR

 One Way Link List Middle Deletion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
30

III. End Deletion: To delete the end node of a one-way link list first we have to reach to the
end of the list.

ALGORITHM: END DELETION (Prev, First, Cur)
This algorithm is used to delete the end node of a one-way link list.

Step 1: [Set Prev to First]
 Prev = First

Step 2: [Set Cur to the link of Prev]
 Cur = Prev -> link

Step 3: [Start loop to reach to the end of the list]
Repeat step 4 & 5 ----- While (Cur -> link != NULL)

Step 4: [Set Cur as Prev]
 Prev = Cur

Step 5: [Update Cur]
 Cur = Cur -> link

Step 6: [Assign NULL to the Prev link]
 Prev -> link = NULL or Prev -> link = Cur -> link

Step 7: [Delete Cur node]
 Free (Cur)

Step 8: [Finish]
 Exit

In the above algorithm in step 1 & 2 we assign prev to first node and cur to the next node to
the prev. In step 3, 4 & 5, we reach to the end of the list. In step 6 & 7, we assign Null to prev
to make it the end node and free cur pointer to delete the end node.

The following figure shows the above mechanism.

 FIRST
1000

 1000

 1001

 1002

 1003

10 1001 20 1002 30 NULL ….. 40 NULL
 PREV CUR

One Way Link List End Deletion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
31

Week No. 11: TWO WAY LINKED LIST

Introduction to Two Way Linked List/ Double Linked List:
One of the big disadvantages of one-way link list is that only possible way to traverse the data is
in the list is the forward traversing. There is no backward traversing of a list in one-way link
list. The problem is handled by the double or two-way link list. In two-way link list each node is
linked to both its successor and predecessor. The two-way link list is traversable from either
direction i.e. forward and backward. On two-way link list a node is divided into three parts.

Information part: It contains the data of a node.
Right or next pointer: It points to the successor node.
Left or previous pointer: Pointer to the predecessor node.

Left Information Right

In the following diagram of two-way link list with three nodes, each node has three parts. The
left part contains the address of predecessor node while the right part contains the address of
the successor node and the information part contains the information about the element.
There are two pointers also used i.e. FIRST and LAST. The FIRST pointer points to the first
or start node of the two-way link list and the LAST pointer points to the last or end node of
the two-way link list.

FIRST LAST
100 102

100

101

102

NULL 10 101 100 20 102 101 30 NULL

The following example explains the concepts of declaring two-way link list node using a
C structure.
 Struct node
 {
 int data;
 Struct node *left;
 Struct node *right;
 };
 Struct node *start;

In the above example, structure node is defined with three fields:

 Data is the int type and is used to store integer values in the node.
 Left as a pointer to the left node. It is used to store the memory addresses. It contains

the memory address of the predecessor node of list.
 Right as a pointer to the right node. It is used to store the memory addresses. It contains

the memory address of the successor node of list.

Operations on Two Way Linked List with algorithms:

1. Insertion Operation:
Let us suppose LIST be a Two-way link list with N successive nodes and a node insert is to be
inserted in a link list. The given node can be inserted in a link list in the following three locations.

I. Front Insertion
II. Middle Insertion

III. End Insertion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
32

I. Front Insertion:
Following algorithm is used to insert a node in the front/start of the Two-way link list.

ALGORITHM: FRONT INSERTION (Cur, First, Insert)

Step 1: [Set cur as First]
Cur = first

Step 2: [Create a node and assign it to insert]
Insert = (struct node *) malloc (sizeof (struct node))

Step 3: [Store information]
Insert -> data = info

Step 4: [Assign cur to the insert right]
Insert -> right = cur

Step 5: [Assign Null to insert left]
Insert -> left = NULL

Step 6: [Assign insert to cur left]
Cur -> left = insert

Step 7: [Set first as insert]
First = insert

Step 8: [Finish]
Exit

The following figure shows the above mechanism.

FIRST LAST
103 102

 100

 101

102

103 10 101 100 20 102 101 30 NULL

 103

NULL 5 100

II. Middle Insertion:

There are two methods that can be used to insert node at the middle of a Two-way link list.

Method 1: If the nodes of the given list are unsorted then we insert node in a list after a

given node.
Method 2: If the nodes of the given list are sorted in some particular order then the node is

inserted at a particular position so that the sorted order could be maintained.

We will discuss the second method. The following algorithm inserts a node at a proper place in
Two-way link list.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
33

ALGORITHM: MIDDLE INSERTION (Prev, Cur, First, Insert)

This algorithm is used to insert a node at the proper location in an ordered LIST in Two-way
link list.

Step 1: [Set prev to first]
Prev = first

Step 2: [Set cur to prev right]
Cur = prev -> right

Step 3: [Read value for insertion]
Read (X)

Step 4: [Search for a proper location]
Repeat step 5 & 6 ------- while (cur -> data<X)

Step 5: [Set prev as cur]
Prev = cur

Step 6: [Set cur to cur right pointer]
Cur = cur -> right

Step 7: [Create a node and set it as insert]
Insert = (struct node *) malloc (sizeof (struct node))

Step 8: [Store information]
Insert -> data = X

Step 9: [Link with cur]
Insert -> right = cur

Step 10: [Link insert left pointer with prev]
 Insert -> left = prev

Step 11: [Link cur & prev with insert]
 Cur -> left = insert
 Prev -> right = insert

Step 12: [Finish]
 Exit

In the above algorithm step 4, 5 & 6 are used to find out a proper position for a new node. In
step 7 & 8, we create a new node, assign its address to insert pointer and store information.
In step 9, 10 & 11, we link the new node to the current and previous nodes respectively.

The following figure shows the above mechanism.

FIRST LAST
100 102

 100

 101

102

NULL 10 101 100 20 103 103 30 NULL
PREV CUR

 103

101 25 102
 INSERT

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
34

III. End Insertion:

End insertion in the two-way link list is much easier than the one –way link list because we
have a direct access to the end node of the two-way link list node.

Following is the algorithm for end insertion in Two-way link list.

ALGORITHM: END INSERTION (Prev, Last, Insert)

This algorithm is used to insert a node at the end of the Two-way link list.

Step 1: [Set prev as Last]

Prev = Last
Step 2: [Create a node and assign it to insert]

Insert = (struct node *) malloc (sizeof (struct node))
Step 3: [Store information]

Insert -> data = X
Step 4: [Assign prev to insert left]

Insert -> left = prev
Step 5: [Assign NULL to insert right]

Insert -> right = NULL
Step 6: [Assign insert to prev right]

Prev -> right = insert
Step 7: [Set Last as insert]

Last = insert
Step 8: [Finish]

Exit

FIRST LAST
100 103

 100

 101

102

NULL 10 101 100 20 102 101 30 103
 PREV

 103
102 5 NULL

 INSERT

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
35

2. Deletion Operation:

Let LIST be a given Two-way link list with N successive nodes and we want to delete a node X
from LIST. Then we can delete that node from three different location of a Two-way link list
which is given as:

I. Front Deletion
II. Middle Deletion

III. End Deletion

I. Front Deletion:

Front deletion is the easiest way to delete a node from a link list. Following is the algorithm
which is used to delete a node from Two-way link list from the front or start.

ALGORITHM: FRONT DELETION (Cur, First)

This algorithm is used to delete a node from the front of a Two-way link list.

Step 1: [Set cur to first]
Cur = first

Step 2: [Update first]
First = cur -> right

Step 3: [Delete node]
Free (cur)

Step 4: [Set cur again as first]
Cur = first

Step 5: [Assign Null to cur left]
Cur -> left = NULL

Step 6: [Finish]
Exit

In the above algorithm in step 1, we store the address of first node in current pointer.
In step 2, we update the FIRST to the next node to make the second node as first. In step 3, we
delete the node by free () function provided in C language. In step 4, again we set the current
pointer to point to first node and now current node is the first node in the list. In step 5, we
assign NULL to current left pointer to make it first node of the list.

The following figure shows the above mechanism.

FIRST LAST
101 102

 100

 101

 102

NULL 10 101 NULL 20 102 101 30 NULL

Two-way link list Front Deletion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
36

II. Middle Deletion:

Let LIST be a Two-way link list with N successive nodes and we want to delete a node X from
a linked list which is not at the FIRST or LAST location. For this we start searching for that
node in the list. If found then one should update the successor and predecessor node pointers.

The following algorithm inserts a node at a proper place in Two-way link list.

ALGORITHM: MIDDLE DELETION (Prev, Cur, First)

This algorithm is used to delete a node at the proper location in Two-way link list.

Step 1: [Set prev to first]
Prev = first

Step 2: [Set cur to prev right]
Cur = prev -> right

Step 3: [Read the value of node to delete]
Read (X)

Step 4: [Starting loop for search a node deletion]
Repeat step 5, 6 & 7 ----- while (cur -> right != Null)

Step 5: [Check a node, if found, then delete and return]
If (cur -> data ==X) then
Prev -> right = cur -> right
Free (cur)
Cur = prev -> right
Cur -> left = prev
Return

Step 6: [Set prev as cur]
Prev = cur

Step 7: [Update cur to right]
Cur = cur -> right

Step 8: [Finish]
Exit

In the above algorithm in step 1, 2, we assign previous pointer to first node and cur to the next
of first node. In step 4, 5, 6 & 7, we start loop for searching for the node, if it is found it is
deleted and exited otherwise the prev is updated to cur and cur is updated to the next node at
right side.

The following figure shows the above mechanism:

FIRST LAST
100 102

 100

101

102

NULL 10 102 101 20 102 100 30 NULL
 PREV CUR CUR

Two-way link list Middle Deletion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
37

III. End Deletion:

End deletion is also very easy as front deletion in Two-way link list.

Following algorithm is used to delete end node of Two-way link list.

ALGORITHM: END DELETION (Cur, Last)

This algorithm is used to delete the end node of a Two-way link list.

Step 1: [Set cur to last]
Cur = last

Step 2: [Update last]
Last = cur -> left

Step 3: [Delete node]
Free (cur)

Step 4: [Set cur again as last/end]
Cur = last

Step 5: [Assign NULL to the cur right]
Cur -> right = NULL

Step 6: [Finish]
Exit

In step 2 of the above algorithm we updated the LAST pointer to point the 2nd last node in the
list. In step 3, memory is free occupied by the last node. In step 4, again set current pointer to
last node, and now current node is the last node in the list. Therefore, assign NULL to current
right pointer.

The following figure shows the above mechanism:

FIRST LAST
100 101

 100

 101

102

NULL 10 101 101 20 NULL 101 30 NULL

Two-way link list End Deletion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
38

Week No. 12: TREES

Introduction to Tree:
A Tree is a non-linear data structure. Each object of a Tree starts with a root and extends
into several branches. Each branch may extend into other branches. Tree is mainly used
to represent the data containing a hierarchal relationship between elements e.g. family tree,
table of contents, organization chart of a company etc.

General Tree:
A General Tree (sometimes called a tree) is defined to be a non-empty finite set of elements
called nodes, such that:

i. Tree contains a distinguished element called the root of the tree.
ii. The remaining elements of a Tree is an ordered collection of zero or more

Disjoint (separate/disconnect) Trees.
iii. In a Tree, a node can have any number of children.

A typical Tree is shown below:

Figure 1:
A

 B C D E

 F G H I J K L M

Tree Terminology:
Family Relationships Terminology is frequently used to describe relationship between the
nodes of a tree.

Node: An entry in a Tree.

Root Node: The node at the top of Tree e.g., in the above figure 1: A is the root node.

Parent: Those nodes that have either the child nodes or the child nodes along with

one parent node is called parent node e.g., in the above figure 1: B is
a parent node.

Children: The node that is directly connected to a parent node is called the child node

e.g., in the above figure 1: F is a child of B.

Sibling: The nodes having same parent is called sibling or brother nodes e.g., in the

above figure 1: I, J and K are sibling nodes because they have same parent D.

Sub tree: The child node of the root that has its own child nodes is called sub tree e.g., in

the above figure 1: B, C, D & E are sub trees.

Level: The root of a tree has a level 0 and the level of any other nodes in the tree is one

more than the level of its father e.g., in the above figure 1: node J is on level 2.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
39

Edge: The line drowns from a node of tree to a successor is called edge or connection
between one node to another.

Path: A sequence of connected edges is called Path.

Leaf: The node with no successor is called leaf node or terminal node e.g., in the

above figure 1: M is a leaf node because it has no successor (child nodes) or a
node with no children.

Branch: A path ending on a leaf is called Branch.

Depth or Height: The maximum numbers of a node in a branch is called depth or height of

the tree e.g., Depth or Height of the tree in the above figure 1: is three.

Degree: Maximum number of children possible for a node or number of sub trees

of a node e.g. in the above figure 1: degree of A is 4, degree of D is 3,
degree of C is 1 and degree of F is 0 etc.

Similar Trees: -
Two or more than two trees are said to be Similar, if they have the same shape.
Consider the following two figures: 2 & 3:

 A

Figure 2: B C

 F D E

J

Figure 3:
 K L

 M N O

In the above two trees, each root node has two children’s nodes. The rightmost child has again
two children’s nodes in each tree. The leftmost node of each tree B and K has one child node
each. It should be noted that B and K has one child node but these child nodes appear to the left
of each node.

Hence the shapes of each tree are the same and thus they are known to be Similar.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
40

Copies of Trees: -
Two or more than two trees are said to be Copies of each other, if they are similar as well as
the contents of each node are also same.

Consider the following two figures: 4 & 5:

 A

Figure 4: B C

 F D E

 A

Figure 5: B C

 F D E

In the above trees, both the trees have same shapes. So, they are similar trees. But all the
contents of the two trees are also the same, i.e. A is the root node in each tree, B and C lies at
the same level of each tree and so on. So, they are also called copies of each other. It should be
noted that the two similar trees cannot be copies of each other, but it is necessary that the two
copied trees are always similar to each other.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
41

Week No. 13: BINARY TREE AND BINARY SEARCH TREE

Binary Tree:
A binary tree is a non-linear data structure in which each node has only 0, 1, or 2 children
(mostly has two children). Binary Tree can be empty or contains one node that is called root of
the tree. Typically, the child nodes are called left & right nodes (Child).

 A

 B C

 D E F

Types of Binary Tree: A Binary Tree has the following types:

1. Strictly Binary Tree:

If every non-leaf/non-terminal node in a Binary Tree has non-empty left and right
subtrees/children then such a tree is called Strictly Binary Tree e.g.

 A Non-leaf/non-terminal node

 B C Non-leaf/non-terminal node

 Non-leaf/non-terminal node D E

 F G

2. Full Binary Tree:

A binary tree is said to be a Full Binary Tree, if its leaf nodes are at same level & every node
have two children OR a Full Binary Tree is a tree in which each level ‘L’ has 2n elements
including last level as ‘n’ represent number of levels e.g.

 A Level 0 2n = 20 = 1 nodes

 B C Level 1 2n = 21 = 2 nodes

 D E F G Level 2 2n = 22 = 4 nodes

3. Complete Binary Tree:

A Complete Binary Tree is a tree in which each level ‘L’ has 2n elements except the last level.

Example: A Level 0 2n = 20 = 1 nodes

 B C Level 1 2n = 21 = 2 nodes

 D E F G Level 2 2n = 22 = 4 nodes

 H I J K

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
42

4. Extended Binary Tree:

A binary tree in which each child node of the root has either one or two children is called
an extended binary tree. It is also called 2 – Tree. The node that has children is called
internal node and the node that have no children is called external node e.g. C, D & B are
external nodes & A is internal node.

 R A

 A B OR B C

 C D D F G
 H I J K

Binary Search Tree:
A Binary Search Tree in which the left child node value of a tree is less than the value of its
root node and the right child node value is greater than its root node value, is called
Binary Search Tree.
Due to these properties, the elements traversed using in order will yield a sorted list of
the elements of a tree. Main advantage of Binary Search Tree is that it is easy to create
a new tree, and also some operations like insertion, searching and deletion are performed easily.

The following tree is an example of binary search tree: {49 30 36 25 75 60 55 68 80 28 12}

 49

 30 75

 25 36 60 80

 12 28 55 68

Operations on Binary Search Tree:
Following operations can be performed on a binary search tree:

1. Making/Constructing a Binary Search Tree:
If there is more than one element in a list then a binary search tree construct using the
following steps:

i. Select 1st element as root R.
ii. Compare 2nd element with the root R, if it is less than the root, place it

at left node of root otherwise place it at right node of root.
iii. Repeat step 2 until all elements are placed.

For example: To construct a Binary Search Tree for the following data:

 16 19 15 9 8 66 12 61

 16

 15 19

 9 66

 8 12 61

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
43

2. Insertion:
A new node is inserted after searching other nodes if the new value exists in any node then
insertion operation fails otherwise the new node is inserted when searching terminates.

The following algorithm finds the location of an item in the Binary Search Tree:

• Compare item with Root node of Tree

– If item < Root then: move to Left child
– If item > Root then: move to right child

• Repeat the above until the item inserted into correct place.

Example 01: To insert the item 20 in the following binary search tree:

 38

 14 56

 8 23 45 85

 18 70
 Before insertion

 38

 14 56

 8 23 45 85

 18 70

 20
 After insertion

Example 02: To insert the item 20 in the following binary search tree:

 9

 5 11

 4 7 10 12

 6 8

 Before insertion

 9

 5 11

 4 7 10 12

 6 8 20

 After insertion

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
44

3. Deletion:
To delete a node involves three conditions:

I. A node with no Children i.e. leaf node
II. A node with one Child

III. A node with two Children

I. Leaf Node Deletion:
To delete a leaf node first of all, search the tree if the element to delete is found then check the
position of deleting node and if it is the leaf node then just delete that leaf node.

For example: Delete item 8 from the following binary search tree:

 9

 5 11

 4 7 10 12

 6 8 20
 Before deleting

 9

 5 11

 4 7 10 12

 6 20
 After deleting

II. Deleting Node with one Child:
First of all, search the node if search is successful then check the position of deleting node and
the position of its child if the deleting node is left of its parent node then child node of deleting
node become left child of the parent of deleting node or vice versa (in other words,
deletion of non-leaf node with one child, child node takes place of disposed node).

For example: Delete item 11 from the following binary search tree:

 9

 5 11

 4 7 12

 6 8 10 20
 Before deleting

 9

 5 12

 4 7 10 20

 6 8 After deleting

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
45

III. Deleting Node with two Children:

– Replace the deleting node with largest element of its left sub tree
 OR
– Replace the deleting node with smallest element of its right sub tree

For example: Delete item 11 from the following binary search tree:

 9

 5 11

 4 7 10 13

 6 8 12 20

Before deleting

 9

 5 12 OR 10

 4 7 10 13 13

 6 8 20 12 20

After deleting

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
46

Week No. 14: TRAVERSING OF GENERAL & BINARY TREES

Traversing of General Tree:

Accessing the nodes of a General Tree exactly once is called Traversing/Visiting of a Tree.

There are three basic ways of accessing the nodes of a General Tree:

1. Level by Level Traversing
2. Pre-Order/Prefix Traversing
3. Post Order/Postfix/Suffix Walk Traversing

The order in which the nodes or elements of a linear list are visited in a traversal is clearly from
first node to last node, however, there is no such natural linear order for the nodes of a tree
so different orderings are used for traversal in different cases.

1. Level by Level Traversing:
In level by level traversing, first visit level 0 / root then visit level 1, level 2 and so on,
from left to right. In level by level traversing, the following criteria have to follow:

i. Visit the root/level 0
ii. Visit the first level from left to right
iii. Visit the next level from left to right and so on.

2. Pre-Order/Prefix Traversing:
In pre-order traversing, parent nodes are always accessed before their children nodes. So, a
pre-order traversing involves first processing the root then traverses the siblings/children
from left to right. In pre-order traversing, the following criteria have to follow:

i. Visit the root
ii. Traverse subtrees from left to right in pre-order (means traverse left subtree,

middle subtree and then right subtree in pre-order).

3. Post Order/ Postfix/Suffix Walk Traversing:
In postfix traversing, first traverses the siblings/children from left to right and then traverse
the root. In postfix traversing, the following criteria have to follow:

i. Traverse the left most terminal node/leaf node.
ii. Traverse across its siblings.
iii. Traverse the parent node.

For example: Consider the following given general tree:

 P

 Q R S

 T U V

 W X

1. Level by Level Traversing: P Q R S T U V W X
2. Pre Order Traversing: P Q T U R S V W X
3. Postfix Traversing: T U Q R W X V S P

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
47

Traversing of Binary Tree:
In traversing, each node of a binary tree is accessed for processing exactly once. It is also
called visiting; the following different methods are used to visit a binary tree i.e.

1. Pre-Order Traversal
2. In Order Traversal
3. Post Order Traversal

Note:
 If a tree T is null then the empty list is the Pre-Order, In Order and Post Order listing of

T.
 If a tree T consist a single node then that node by itself is the Pre-Order, In Order and Post

Order listing of T.

1. Pre-Order Traversal:
In Pre-Order Traversal, first root is processed then left child and then right child.
Example:
 A

 B G

 C D H I

 E F

Pre-Order Traversal: A B C D E F G H I

2. In Order Traversal:
In In-Order Traversal, the left child is traversal first then the root and after it the right child is
accessed.
Example:
 F

 B H

 A D G I

 C E

In Order Traversal: A B C D E F G H I

3. Post Order Traversal:
In post order traversal, first left node is processed then right node and at the end parent node
is processed.
Example:
 I

 E H

 A D F G

 B C

Post Order Traversal: A B C D E F G H I

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
48

Notations and Expressions:

Polish Notations:

Named after Polish mathematician Jan Lukasicwicz.

There are three Polish Notations:

i. Polish Infix Notation
ii. Polish Prefix Notation
iii. Polish Postfix Notation

i. Polish Infix Notation:

Polish Infix Notation refers to the notation in which the operator symbol is placed between its
two operands.

For example: i. A + B, ii. C – D * E, iii. A * (B + C) etc.

ii. Polish Prefix Notations:

Polish Prefix Notation refers to the notation in which the operator symbol is placed before its
two operands.

For example: i. +AB, ii. – C*DE, iii. *A+BC etc.

iii. Polish Postfix Notation:

Polish Postfix Notation refers to the notation in which the operator symbol is placed after its
two operands.

For example: i. AB+, ii. CDE*–, iii. ABC+* etc.

Inter Conversion of Notations:

1. Infix to Prefix:

Convert the following Infix Notations to the Prefix Notations:

i. (A + B) * C
= [+AB] * C
= *+ABC

ii. A + (B * C)
 = A + [*BC]
 = +A*BC

iii. (A + B)/(C – D)

= [+AB]/[– CD]
= /+AB–CD

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
49

2. Infix to Postfix:

Convert the following Infix Notations to the Postfix Notation:

i. (A + B) * C
= [AB+] * C
= AB+C*

ii. A + (B * C)
= A + [BC*]
= ABC*+

iii. (A + B)/(C – D)
= [AB+]/[CD–]
= AB+CD–/

3. Infix to Prefix & Postfix:

Convert the expression ((a + b) + c * (d + e) + f) * (g +h) to a Prefix expression & Postfix
expression:

To Prefix:

 ((a + b) + c * (d + e) + f) * (g +h)
= ([+ab] + c * [+de] + f) * [+gh]
= ([+ab] + [*c+de] + f) * [+gh]
= ([++ab*c+de] + f) * [+gh]
= [+++ab*c+def] * [+gh]
= *+++ab*c+def+gh

To Postfix:

((a + b) + c * (d + e) + f) * (g +h)
= ([ab+] + c * [de+] + f) * [gh+]
= ([ab+] + [cde+*] + f) * [gh+]
= ([ab+cde+*+] + f) * [gh+]
= [ab+cde+*+f+] * [gh+]
= ab+cde+*+f+gh+*

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
50

Week No. 15: GRAPH
Introduction to Graph:
Tree data structure is used to represent the one to many relationships. In real life, we
frequently come across the problem can be best described by many to many relationships. Such
a problem cannot be solved using tree or other data structures. To solve this problem, use a
non-linear data structure, called graph.

A graph is a non-linear data structure which is made up of sets of nodes and lines. Nodes are
called Vertices or Points and lines are called Edges of arcs. Lines are used to connect vertices
with each other. An edge of a graph is represented as follow:

 e = [u, v]

‘u’ and ‘v’ denote the start and end nodes of an edge ‘e’. They are also called head and tail
nodes of edge ‘e’.

Graphs are used to represents essentially any relationship. Graphs are used to study the
problems in a wide variety of areas including computer science, electrical engineering, chemistry
etc. for example it is used to represent and study transport networks, communication networks
and electrical circuits.

In transportation networks, graph vertices represent the location between which people or
goods can be moved. Location may be cities, airports, terminals etc. The edge represents path
between the vertices which may be roads, railway tracks etc., through which the
communication between cities takes place. Following graph represents a transport links
between cities. The vertices represent the city and the edge represents the roads between these
cities.

Charsadda

Mardan Nowshera

 Peshawar Islamabad

The above graph has 5 vertices and 7 edges.

Graph Terminologies:

1. Degree of a Node:
The number of edges a node contains is called the degree of the node. For example, in the
following figure A has a degree 3, B has a degree 2, C has a degree 2 and D has a degree 3.

 A C

 B D

A node that has 0 degree is called Isolated Node. And a graph having only one isolated node
is called Null Graph.

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
51

Out – Degree & In – Degree:
The number of edges beginning from a node is called out – degree of the node. For example in
the following figure: A has 3 out – degree, C has 1 out – degree, D has 1 out – degree and B
has 0 out – degree. A node having 0 out – degree is called terminal node or leaf node and
other nodes are called Branch Nodes.

 A C

 B D

The number of edges ending at a node is called in – degree of the node. In the above graph
shown in – degree of A is 0, B has in – degree 2.

The sum of the out – degree and in – degree is the Total Degree. The total degree of a loop
node is 2 and that of isolated node is 0.

2. Source & Sink Nodes:
The node that has a positive out – degree but 0 in – degree is called Source Node. In the
following figure A is a source node because it has positive out – degree 3 and 0 in – degree.

 A C

 B D

The node that has 0 out – degree but have positive in – degree is called Sink Node.

For example, in above figure B is a sink node because it has 0 out – degree and positive
in – degree 2.

3. Pendent Node:
A node is said to be a pendent node if it has total degree equal to 1. In the below figure A is a
pendent node because it has out – degree 1 and in – degree 0, so its total degree becomes 1.
All the other nodes have more then 1 total degree so they are not pendent nodes.

 A B C
 Pendent node

 D E
4. Loop Edge:
An edge ‘e’ is said to be a loop edge if the same node is its tail and head. A loop edge is shown
in the following figure:

 B
 A

 C

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
52

5. Multiple Edges:
A graph is said to have multiple edges, if it has more than one edge have the same tail and
head nodes. An example of multiple edges is given below:

 B
 A

 C

The edges that have the same tail and head nodes are known as Parallel Edges.

6. Path & Length of Graph:
A list of nodes of a graph where each node has an edge from it to the next node is called Path.
It is written as a sequence of nodes u1, u2, u3, u4………..un.

A path which repeats no node is known as the Simple Path. A path is usually assumed to be a
simple path unless otherwise defined. For example, in the following figure, a path from A to B
is a Simple Path.

The maximum number of edges in a path of a graph is called Length of the Graph. The length
of a path which consisting of ‘n’ number of nodes, is n – 1. For example, in the following
figure, a path from A to B has two nodes so the length of that path is n – 1 = 2 – 1 = 1 and a
path from A to C, D, B has four nodes so the length of that path is n – 1 = 4 – 1 = 3. So, the
Length of the following Graph is 3.

 A C

 B D

7. Cyclic & Acyclic Path:
A path which starts and ends at the same node is called Cyclic Path. In other words, a path
from a node to itself is called Cyclic Path. It is also known as circuit. The length of a cycle
must be at least 1. Following figure is an example of Cyclic Path:

 A C

 B D

A path in which start node & end node are different is called Acyclic Path. The following
figure is an example of Acyclic Path:

 A C

 B D

The directed graph that has no cycles is called Acyclic Graph. A directed acyclic graph is
also referred to as DAG (Directed Acyclic Graph).

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
53

Types of Graph:

1. Undirected Graph:
An undirected graph has edges that have no directions. An undirected graph is also called
undigraph e.g.
 A C

 B D
2. Directed Graph:
A directed graph has edges that are unidirectional. A directed graph is also called digraph e.g.
 A C

 B D
3. Weighted Graph:
A graph which has a weight or number associated with each edge is called a weighted graph.
Weight of an edge is sometimes called its cast. The weight of edge usually represents some
conditions or situations. For example, in the following weighted graph, the weights represent
the distance between the cities.

Charsadda
 30 28

 18

Mardan Nowshera

An edge of a weighted graph is represented as: e = [u, v, w]
‘u’ and ‘v’ represents the start and end node of an edge where ‘w’ represents the weight of an
edge ‘e’.

4. Complete Graph:
A graph is said to be a complete graph in which every vertices or node is connected to each
other or a graph in which there is an edge between every pair of vertices. For example, if a
graph has ‘n’ nodes, then each node has (n - 1) total degree i.e. it is connected with n – 1
nodes, so the number of edges can be calculated by the formula: e = n (n – 1)/2.
Where n is the total numbers of nodes in a graph and e is the number of edges. For example,
in the following figure 4 nodes are connected, so the numbers of edges are:

 e = n (n -1)/2 e = n (n -1)
 = 4 (4 - 1)/2 OR = 4 (4 - 1)
 = 4 (3)/2 = 4 (3)
 = 12/2 = 12
 So e = 6 So e = 12

 A C A C

 B D B D

 - Undirected Complete Graph - Directed Complete Graph

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
54

5. Regular Graph:
A graph in which each node has equal total degree is called regular graph. Consider the
following figure in which there are three nodes. Each node of them has equal in – degree
& out – degree and total degree of the nodes is also equal. Hence the graph is said to be
a regular graph.

 A

 B C

6. Isomorphic Graphs:
Two graphs are said to be isomorphic if they have same behavior in terms of graphical
property. All the edges of the two graphs must be incident at their corresponding nodes. The
conditions for isomorphism are:

1. The number of nodes in two graphs must be same.
2. There must be the same number of edges in the two graphs.
3. All the corresponding nodes of the two graphs must have same

in – degree and out – degrees.

For example, in the following two graphs there are 5 nodes: v1, v2, v3, v4, v5 and 5 edges in
the first graph and in the second one there also 5 nodes and 5 edges. The behavior of the two
graphs is same, because e1 lies in v4 and v5. Similarly, e1 lies in v4 and v5. So, in graph 1 and
2 numbers of nodes are equal, the numbers of in – degree and out – degree of all
corresponding nodes are same. So, they are isomorphic graphs.

 V5

 e1
 e2 e5
 V4 V1 V2 V4

 e5 e3 e2 e4 e1

 V2 V3 V1 V3
 e4 e3 V5
 Graph 1 Graph 2

In graph 3 & 4, the number of edges and nodes are equal. Also, the numbers of in – degree
and out – degree of v2 are same in both graphs. But v1 and v3 have not same in – degree and
out – degree in both graphs. Hence graph 3 & 4 are not isomorphic.

 V1 V1
 e1 e2 e1 e2
 e3 e4

 V2 V3 V2 V3
 e4 e3
 Graph 3 Graph 4

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
55

Graph Representation:
Graphs are unstructured. One vertex in a graph might be adjacent to every other vertex. Similarly,
a vertex might be adjacent to just one vertex. This property of adjacency is used to represent graph
in computer memory.

Link representation of graph or Adjacency List:
Let figure G be a directed graph with 5 nodes. The following table shows each node in figure G
followed by its adjacency list which is its list of adjacent nodes, also called its successors or neighbors.

 A D

 E

 B C
 Figure G

Following figure shows a diagram of a linked representation of figure G in memory. Specifically,
the linked representation will contain two lists, a node list and edge list.

START

 100
 A 102 104 106 Ø

 102
 B 104 Ø

 104

 106
 D 104 108 Ø

 108

 E 104 Ø

A. Node List: Each element in the list NODE will correspond to a node in graph, and it will

be a record of the form.

NODE NEXT ADJ /////////////////////////////

Here NODE will be the name of key value of the node, NEXT will be a pointer to
the next node in the list NODE and ADJ will be a pointer to the first element in adjacency list
of the node, which is maintained in the list EDGE. The shaded area indicates that there may be
other information in the record like in – degree, out – degree etc.

B. Edge List: Each element in the list EDGE will correspond to an edge of graph and will be
a record of the form.

DEST LINK ///////////////////////////////////////

The field DEST will point to the location in the list NODE of the destination or terminal node
of edge. The field LINK will link together the edges with the same initial node, that is,
the nodes in the same adjacency list. The shaded area indicates that there may be
other information in the record corresponding to the edge, such as weight etc.

Node Adjacency List
A
B
C
D
E

B, C, D
C

C, E
C

 C Ø

Prepared by: Arshad Iqbal, Lecturer (CS/IT), ICS/IT - FMCS, The University of Agriculture, Peshawar
56

Week No. 16: REVISION

Revision of the complete course.

THE END

