CSC 222: Computer Organization & Assembly Language

2 – Data Representation

Instructor: Mr. Farooq Faisal ICS & IT FMCS The University of Agriculture Peshawar

Number System

- Any number system using a range of digits that represents a specific number. The most common numbering systems are decimal, binary, octal, and hexadecimal.
- Numbers are important to computers
 - represent information precisely
 - can be processed

For example:

- to represent yes or no: use 0 for no and 1 for yes
- to represent 4 seasons: 0 (autumn), 1 (winter), 2(spring) and 3 (summer)

Positional Number System

- A computer can understand positional number system where there are only a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.
- A value of each digit in a number can be determined using
 - The digit
 - > The position of the digit in the number
 - The base of the number system (where base is defined as the total number of digits available in the number system).

Decimal Number System

A numbering system that uses ten digits, from 0 to 9, to represent numerical values/quantities. Each digits has a weighted value of 10⁰, 10¹, 10², 10³ and so on, ranging from right to left.

Binary Number System

A numbering system that uses two digits 0 and 1, to represent numerical values/quantities. Each digits has a weighted value of 2⁰, 2¹, 2, 2³ and so on, ranging from right to left.

Hexadecimal Number System

A numbering system that uses sixteen digits, from 0 to 9 and A to F, to represent numerical values/quantities. Each digits has a weighted value of 16⁰, 16¹, 16², 16³ and so on, ranging from right to left.

Converting Hexadecimal to Decimal

- Multiply each digit of the hexadecimal number from right to left with its corresponding power of 16.
- Convert the Hexadecimal number **82ADh** to decimal number.

Converting Binary to Decimal

- Multiply each digit of the binary number from right to left with its corresponding power of 2.
- Convert the Binary number 11101 to decimal number.

- Converting Decimal to Binary
- Divide the decimal number by 2.
- Take the remainder and record it on the side.
- REPEAT UNTIL the decimal number cannot be divided into anymore.

- Converting Decimal to Hexadecimal
- Divide the decimal number by 16.
- Take the remainder and record it on the side.
- REPEAT UNTIL the decimal number cannot be divided into anymore.

Converting Hexadecimal to Binary

Given a hexadecimal number, simply convert each digit to it's binary equivalent.
 Then, combine each 4 bit binary number and that is the resulting answer.

Converting Binary to Hexadecimal

Begin at the rightmost 4 bits. If there are not 4 bits, pad 0s to the left until you hit 4.
 Repeat the steps until all groups have been converted.

Binary Arithmetic Operations

- Addition
- Like decimal numbers, two numbers can be added by adding each pair of digits together with carry propagation.

Binary Addition	Decimal Addition
101100	1184
+ 10011	+ 537
11001	647

Binary Arithmetic Operations

Subtraction

Two numbers can be subtracted by subtracting each pair of digits together with borrowing, where needed.

11001	627
10011	- 537
00110	090

Binary	Subtraction
--------	-------------

Decimal Subtraction

Hexadecimal Arithmetic Operations

- Addition
- Like decimal numbers, two numbers can be added by adding each pair of digits together with carry propagation.

5B39 + 7AF4 D62D

Hexadecimal Addition

HexaDecimal Arithmetic Operations

Subtraction

Two numbers can be subtracted by subtracting each pair of digits together with borrowing, where needed.

> D26F - <u>BA94</u> _17DB

Hexadecimal Subtraction

- In computing, the most significant bit (msb) is the bit position in a binary number having the greatest value. The msb is sometimes referred to as the left-most bit.
- In computing, the least significant bit (lsb) is the bit position in a binary integer giving the units value, that is, determining whether the number is even or odd. The lsb is sometimes referred to as the right-most bit.

- An unsigned integer is an integer at represent a magnitude, so it is never negative.
- Unsigned integers are appropriate for representing quantities that can be never negative.

Signed Integers

- A signed integer can be positive or negative.
- The most significant bit is reserved for the sign:
 - ▶ 1 means negative and 0 means positive.

• Example:

00001010 = decimal 10 10001010 = decimal -10

| |9

One's Complement

The one's complement of an integer is obtained by complementing each bit, that is, replace each 0 by a 1 and each 1 by a 0.

2's Complement

- Negative integers are stored in computer using 2's complement.
- To get a two's complement by first finding the one's complement, and then by adding 1 to it.

Example

- 11110011 (one's complement of 12)
- + 0000001 (decimal 1)
 - 11110100 (two's complement of 12)

Subtract as 2's Complement Addition

- Find the difference of 12 5 using complementation and addition.
- 00000101 (decimal 5)
- 11111011 (2's Complement of 5)

```
\begin{array}{c} 00001100 & (decimal 12) \\ + 11111011 & (decimal -5) \\ \hline 00000111 & (decimal 7) \end{array}
```

No Carry

Example

- Find the difference of 5ABCh 21FCh using complementation and addition.
- 5ABCh = 0101 1010 1011 1100
- 21FCh = 0010 0001 1111 1100
- 1101 1110 0000 0100 (2's Complement of 21FCh)

0101 1010 1011 1100 (Binary 5ABCh) + 1101 1110 0000 0100 (1's Complement of 21FCh) 10011 1000 1100 0000

Discard
Carry

Decimal Interpretation

- How to interpret the contents of a byte or word as a signed and unsigned decimal integer?
- Unsigned decimal interpretation
 - Simply just do a binary to decimal conversion or first convert binary to hexadecimal and then convert hexadecimal to decimal.
- Signed decimal interpretation
 - If msb is zero then number is positive and signed decimal is same as unsigned decimal.
 - If msb is ONE then number is negative, so call it -N.To find N, just take the 2's complement and then convert to decimal.

Example

- Give unsigned and signed decimal interpretation FE0Ch.
- Unsigned decimal interpretation
 - $16^3 * 15 + 16^2 * 14 + 16^1 * 0 + 16^0 * 12 = 61440 + 3584 + 0 + 12 = 65036$
- Signed decimal interpretation
 - FE0Ch = 1111 1110 0000 1100 (msb is 1, so number is negative).
 - To find N, get its 2's complement
 0000 0001 1111 0011 (1's complement of FE0Ch)

+ 1 N = $0000\ 0001\ 1111\ 0100$ = 01F4h = 500So, -N = 500

Decimal Interpretation

- For 16 bit word, following relationships holds between signed and unsigned decimal interpretation
- From 0000h 7FFFh, signed decimal = unsigned decimal
- From 8000h FFFFh, signed decimal = unsigned decimal 65536.
- Example:
- Unsigned interpretation of FE0Ch is 65036.
- Signed interpretation of FE0Ch = 65036 65536 = -500.

Binary, Decimal, and Hexadecimal Equivalents.

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0000	0	0	1000	8	8
0001	1	1	1001	9	9
0010	2	2	1010	10	А
0011	3	3	1011	11	В
0100	4	4	1100	12	С
0101	5	5	1101	13	D
0110	6	6	1110	14	Е
0111	7	7	1111	15	F

Character Representation

- All data, characters must be coded in binary to be processed by the computer.
- ASCII:
 - American Standard Code for Information Interchange
 - Most popular character encoding scheme.
 - Uses 7 bit to code each character.
 - $\blacktriangleright 2^7 = 128 \text{ ASCII codes.}$
 - Single character Code = One Byte [7 bits: char code, 8th bit set to zero]
 - > 32 to 126 ASCII codes: printable
 - 0 to 31 and 127 ASCII codes: Control characters

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	в	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	C
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	*	69	45	E	101	65	e
6	06	Acknowledge	38	26	æ	70	46	F	102	66	f
7	07	Audible bell	39	27	·	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	Ċ
11	OB	Vertical tab	43	2 B	+	75	4B	к	107	6B	k
12	oc	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	М	109	6D	m
14	OE	Shift out	46	2 E	-	78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	o	80	50	Р	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	વ
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	ສ	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	v	118	76	v
23	17	End trans. block	55	37	7	87	57	ឃ	119	77	ឃ
24	18	Cancel	56	38	8	88	58	x	120	78	x
25	19	End of medium	57	39	9	89	59	Y	121	79	У
26	1A	Substitution	58	ЗA	:	90	5A	z	122	7A	z
27	1B	Escape	59	ЗB	;	91	5B	C	123	7B	{
28	1C	File separator	60	ЗC	<	92	5C	۸	124	7C	I
29	1D	Group separator	61	ЗD	-	93	5D]	125	7D	}
30	1E	Record separator	62	ЗE	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	ЗF	?	95	5F		127	7 F	

How to Convert?

- If a byte contains the ASCII code of an uppercase letter, what hex should be added to it to convert to lower case?
 - Solution: 20 h
 - Example: A (41h) a (61 h)
- If a byte contains the ASCII code of a decimal digit, What hex should be subtracted from the byte to convert it to the numerical form of the characters?
 - Solution: 30 h
 - Example: 2 (32 h)

Character Storage

ASCII Representation of "123" and 123

